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ABSTRACT OF THE DISSERTATION

Error-Coded Algorithms for On-Line Arithmetic

by

Abdolali Gorji-Sinaki

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1981

Professor Milos D. Ercegovac, Chair

Since on-line arithmetic requires relatively long se-

quences of operations in order to achieve speed-up over con-

ventional arithmetic, it is important to protect on-line al-

gorithms against hardware failures. If not protected, the

hardware failures could quickly contaminate large number of

results in progress due to tight coupling of the steps at

the digit level. By detecting errors, as they occur, an ef-

fective, gracefully degradable organization could be

achieved. Namely, error at any step of the algorithms would

lead to restriction of precision (significance) of the
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remaining steps but not catastrophic termination.

The main objective of this dissertation is to develop

and demonstrate the feasibility of error-coded on-line ar-

ithmetic suitable for distributed systems.

In this thesis a set of error-coded on-line algorithms

was developed for the four basic operations of

addition/subtraction, multiplication and division. Low cost

arithmetic error codes (Residue and AN Codes) were found to

be suitable for this purpose.

Hardware design of the error-coded units at the gate

level was considered. A residue-coded on-line division unit

was designed based on a already designed digit-slice divi-

sion unit.

A general mathematical model for the cost and speed of

the error-coded units was derived and was compared with

similar values when no error code is used. Finally, the ef-

fectiveness of the proposed detection/correction schemes was

considered and proved.
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Objctve

This thesis is concerned with the development of a set

of error coded basic algorithms for on-line arithmetic. In

on-line processing the operands, as well as the results,

f low through the arithmetic unit in a digit-by-digit manner

starting with the most significant digit. On-line arithmet-

ic provides a simple approach to achieve higher computation-

al rates by allowing overlap at the digit level between the

successive operations EERC 75, TRI 77, IRW 77). In particu-

lar, on-line arithmetic is highly attractive in some special

applications, such as serial real-time processing, variable

precision arithmetic and data flow architecture. Because of

the serial nature of the algorithms, they might be used ef-

fectively in conjunction with large serial memories (CCDs,

Bubble, etc.). On-line arithmetic offers a number of trade-

of fs in system organization (interconnection and memory

structures) that warrant additional research in this area.

Since on-line arithmetic requires relatively long se-

quences of operations in order to achieve speed-up over con-

ventional arithmetic, it is important to protect on-line al-

LAI1.



gorithms against hardware failures. If not protected, the

hardware failures could quickly contaminate large number of

results in progress due to tight coupling of steps at the

digit level. By detecting errors, as they occur, an effec-

tive, gracefully degradable organization could be achieved.

Namely, error at the j-th step would lead to restriction of

precision (significance) of the remaining steps but not ca-

tastrophic termination.

In this thesis we address the problem of developing

such detection and correction procedures. We shall show that

low-cost arithmetic error codes can be used effectively to

support error-coded on-line arithmetic. Low cost error

codes are advantageous because of the very simple checking

procedure and cost-effective implementation.

In the rest of the current chapter we review the

state-of-art in on-line algorithms and consider some of

their properties and applications. In Chapter 2 of this

thesis a summary of the existing error-codes will be given.

Chapter 3 and 4 are the main results of this work and deal

with the presentation of the detection/correction schemes

and their hardware implementation. In Chapter 5 performance

of the error-coded units will be considered and their cost

and speed will be compared with the corresponding ordinary

on-line units. Chapter 6 contains the summary of the results

obtained and some suggestions for the future research in the

2



area of on-line arithmetic.



1.2 On-Line Arithmetic

1.2.1 Definitions

By on-line algorithms we mean those arithmetic algo-

rithms in which the operands as well as the results flow

through the arithmetic unit in a digit-by-digit fashion,

most significant digits first. These algorithms are such

that, in order to generate the j-th digit of the result,

(j+8) digits of the corresponding operands are required.

is called the on-line delay and is preferred to be as small

as possible (Figure 1.1).

Xj +
ON - LINE -z.

+8 AU

t : 1 2 ... 6 6 +1 ... n n+1 ... n+6

IN UT xlx 2  ... x8 x6+1  ... Xn  0 ... 0
INPUT : 1 2 8 +~

Y1Y2 ." YhSY6+1 "" Yn 0 ... 0

OUTPUT: - - .,. - ... n

Figure (1.1)- An On-Line Arithmetic Unit
-----------------------------------------------------

It is not difficult to see that the use of redundant number

representation is mandatory for on-line algorithms. If we

were to use a non-redundant number system, then even for

4
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simple operations like addition and subtraction there is an

on-line delay of S=m due to carry propagation (m is the

length of the operands). By using the signed-digit

representation of numbers EAVI 61), it is possible to limit

the carry propagation to one digit position.

1.2.2 Background

In general, an on-line algorithm is specified recur-

sively in term of on-line representation of operands,

results and some internal values. The following are the

steps of a typical on-line algorithm:

1. Initialization:

2. Basic Recursion Step:

Pji f(P j-l,xj+, Yj+s,zj )

Where f is a linear function and P. is the partial result.

3. Selection Step:

Z j+4-SELECT(Pjxj 8,Yj+a )

Several of the well known basic algorithms satisfy the

on-line property with respect to either the operands or the

results. Consider, for example, conventional division which

has the on-line property with respect to the quotient di-

gits. Similarly, conventional multiplication has the on-line

property with respect to the multiplier. This property has

later been extended to the product digits as well.

5



As was mentioned earlier in this section, allowing

redundancy in number representation will speed up the opera-

tion by limiting the carry propagation. A well known example

is the totally parallel addition/subtraction with 9=i EAVI

61]. More recent work in the area of on-line computation has

been done by Ercegovac and Trivedi EERC 75, TRI 77 and, TRI

78]. They developed on-line algorithms for multiplication

and division. An overview of the generalized (with respect

to radix) on-line algorithms for addition/subtraction, mul-

tiplication and, division has appeared in EIRW 77] along

with the design of an on-line arithmetic unit. Others have

extended on-line algorithms to encompass the on-line square

rooting [ERC 78, OKL 78] and on-line normalization EGRN 79].

Also, a systematic method for derivation of on-line

addition/subtraction, multiplication and, division algo-

rithms appears in EGOR 80]. Several on-line algorithms such

as y=ax+b: have been developed and used in iterative struc-

tures for array computations. Typical problems, such as

matrix-vector multiplication and solving linear recurrence

systems, have been investigated and corresponding solutions

using on-line approaches are proposed and evaluated EERC 80,

GRN 80]. Other on-line algorithms and structures are re-

ported in [CHU 80). In order to efficiently explore and

develop on-line algorithms a highly functional simulator has

been developed and it is running on a DEC VkX 11/780 [RAG

80).

6



1.2.3 Performance of On-Line Algorithms

There are seven major criteria that should be con-

sidered in evaluating the performance of a computational al-

gorithm. These seven criteria are listed below:

1. Speed: throughput and delay

2. Cost: processor, processor types and, storage require-

ments.

3. Control efficiency

4. Interconnection requirements

5. Flexibility

6. Modularity

7. Reliability/"Robustness" of the algorithms.

The potential of on-line arithmetic in achieving a high

performance has long been recognized and because of this

property, a number of basic on-line algorithms have been

developed in the literature (for the corresponding refer-

ences see 1.2.2). Also a paper, written by Ercegovac and

Grnarov [ERC 80], analyzes the performance of on-line arith-

metic structures. It provides a relative comparison with the

conventional arithmetic in computational problems such as

the evaluation of scalar and vector expressions and re-

currence systems. In what follows we analyze the performance

of on-line algorithms with respect to the seven criteria

mentioned above.

7



Speed

The speed-up of on-line algorithms is achieved by con-

sistently applying a digit-serial mode of operation where

the operands and the results are processed beginning with

the most significant digit. Therefore, successive operations

can be overlapped at the digit level and the interconnection

requirements between arithmetic units are reduced to a

minimum. Also by using a redundant representation of the

partial results, it is possible to limit the carry propaga-

tion. Consequently the time required to compute one output

digit can be made independent of the length of the operands.

Using a higher radix may also increase the speed of the

computation by reducing the necessary number of steps for a

given precision. But at the same time it increases the time

to perform the basic recursion and the complexity of the

corresponding on-line unit. Ercegovac and Grnarov in their

paper [ERC 80] compared the speed of a multilevel on-line

unit with the corresponding conventional unit demonstrating

that for m=32 (m is the number of digits of the result), a

network with two or more levels is faster in on-line arith-

metic than in conventional arithmetic. They also showed that

the time required to perform an operation is linearly pro-

portional to the required precision. The results of their

study indicate that by using on-line arithmetic (besides

highly reduced communication requirements and modular, uni-

8



form implementation) one can expect an additional speed-up

factor of 2-10.

Pipelining of successive operations can also be used as

an effective speed-up technique EAVI 70, TUN 70, ERC 80). In

this scheme multiple on-line units are connected together in

such a way that when the first unit completes processing, it

passes all the necessary informations down the pipe and to

the next unit. When one unit has completed all of the pro-

cessing associated with the present operation, the next unit

in line can begin generating the next result digit associat-

ed with that same instruction. In this way, the fraction ar-

ithmetic unit, which has been traditionally considered as a

single stage of the pipeline, can be further decomposed into

multiple stages to speed up processing even more. Chaining

operations on result digit as they become available can in-

crease processing speed even more.

Cost

The cost of on-line networks is a function of the cost

of on-line arithmetic units and the cost of communication

between the corresponding modules. Since in an on-line en-

vironment the interconnection between modules is via a one-

digit wide link, the communication cost is obviously less

than that of a conventional network. In a conventional net-

work the number of data links between two modules is propor-

tional to the number of digits transferred which is usually

9



a full precision number. On the other hand the number of

modules required to implement a conventional arithmetic unit

is at least proportional to m, while the corresponding

number in an on-line environment is proportional to m/2 EERC

80]. This factor also reduces the cost of on-line networks

with respect to conventional one. Ercegovac and Grnarov EERC

80) proved that the sufficient condition needed for an on-

line, non-pipelined network to be less costly than the con-

ventional one is that the cost of the on-line modules should

not be more than twice the cost of the conventional module.

Control

Typically, the most random part of any system is its

control logic. This randomness in logic makes the design of

the control part of the system cumbersome and expensive. In

order to alleviate this problem it is possible to micropro-

gram the on-line unit possibly via a PLA to avoid randomness

in control logic. On the other hand, since the basic compu-

tational step, in an on-line algorithm, is invariant at

every step j and the only primitive arithmetic operation is

addition, the control section can be designed in a straight-

forward manner. Ercegovac showed that the control require-

ments of an on-line unit is very simple. Assuming a syn-

chronous mode of operation of the entire configuration, he

showed that, the synchronizing clock pulses on which the

transfer of digits occur, are all that is needed and the

10



same clock pulses, defining the basic step, are distributed

to all units [ERC 75). Finally, it is worth noting that,

even though the on-line algorithms are iterative in nature,

there are no convergence tests to be performed and this

makes the control part simple and deterministic.

Interconnection Requirements

As was mentioned earlier in this section, one of the

advantages of on-line units, in addition to a simple comput-

ing block, is the simplicity of communication between the

corresponding modules. This reduction in internal and exter-

nal communication requirements, comes from the fact that

each module's control sees only its own state, therefore the

interconnection among the elementary on-line units requires

only single digit links. With regard to this, the structure

using on-line arithmetic can be implemented in a highly

modular manner. Pipelining of the on-line modules will also

increase the complexity of the units, while the communica-

tion required between units will increase the links and

therefore the pin count of each unit.

Flexibility

The ability of the on-line methods to perform without

severe degradation while using the limited resources, (in

other words their implementation flexibility) is also of

practical importance. The on-line structures are easily ex-



tendible to accommodate either more levels or higher preci-

sion. Ercegovac proved that the proposed on-line method can

be implemented under a wide range of speed/cost constraints

in a simple way [ERC 75). His method requires for the

fastest evaluation, a configuration of m identical elementa-

ry units, but allows, in a straight forward manner, exploi-

tation of its flexibility in tradeoff between the speed and

cost. The cost change in precision, in the number of ele-

mentary units or in their complexity, affects the speed of

computation linearly.

Modularity

It was previously mentioned that, the interconnections

in an on-line arithmetic network are much simpler than in a

conventional one, since only single digits are transferred

between the operational units. Therefore, the structures us-

ing on-line arithmetic can be implemented in a highly modu-

lar manner. This property makes the arithmetic unit expand-

able both from the individual chip and the overall system

viewpoint. In order to achieve this, the processing logic of

on-line units should be partitioned to make it suitable to

LSI. Logic partitioning involves the organization of the

internal logic structures so that large functional areas(or

arrays) on the chip can be grouped together and used repeti-

tively. External to the chip, functional partitioning of the

overall system requires a framework consisting of modules

12



which are completely self-contained processors, each having

its own local store, processing logic, and the control

necessary for the module to execute its function. Thus, each

module acts as a small insular unit of logic. A good exam-

ple of such a building block, for signed-digit arithmetic,

is the single-package arithmetic processor called the Arith-

metic Building Element (ABE) CAVI 70]. In the on-line en-

vironment, a typical module, implemented in a LSI technique,

can be a 16 bit unit with a 4- operand adder, 4 registers,

and a selection and carry block which can be by-passed so

that a larger precision unit can be simply constructed by

concatenating the required number of basic modules EERC 75).

An organization of on-line unit as a linear array of identi-

cal modules operating in parallel is shown in Figure 1.2.

Figure (1.2) A Modular Organization of an On-Line Unit

13
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Reliability

The reliability of on-line algorithms is of the major

concern in this thesis. We are trying to enhance their

"robustness" by applying err~or detection and correction to

the already developed algorithms. The main result of this

work is presented in Chapter 3 where error coded algorithms

for four basic operations of addition, subtraction, multi-

plication and division are defined. Low-cost arithmetic er-

ror codes (Residue and AN codes) are found to be perfectly

suitable for this purpose because the checking procedure is

very simple and cost-effective to implement.

14



..4Applications

On-line arithmetic has a wide range of applications

which makes it interesting for investigation in LSI technol-

ogy. In what follows we review some of these applications

with regard to the fact that some new applications may occur

as advances are made in technology.

The most obvious use of on-line arithmetic is in the

area of real-time processing in which the operands are gen-

erated serially by an analog-to-digital conversion process

beginning with the most significant digits. An on-line unit

can be used to process these digits as soon as they become

available. This is unlike the conventional setup, where the

processing unit must wait while the full precision operands

are converted before starting the operation. The speed up

benefits are obvious. In fact, any system designed to be of

use in a real-time environment can make significant gains

with the addition of an on-line module to its hardware.

Another possible application is in performing variable

precision arithmetic. The existing algorithms and their

simple implementation requirements are compatible with the

required modularity of any variable precision unit. It is

believed that sufficient register and adder widths can be

provided by large scale integrated technology to provide

enough "variable precision arithmetic" to meet the demands

of most applications EAVI 62). As a result, a unit which

15



operates in an on-line fashion can provide the ever popular

microprocessor, a device traditionally restricted from most

mathematical applications because of its short word length,

with variable precision arithmetic capabilities.

Large-Scale computing applications of on-line arithmet-

ic has been considered in NWAT 80]. In this research a mul-

tiprocessor organization for large-scale numerical behavior

of algorithms has been studied.

On-line arithmetic can also be used in conjunction with

large serial memories (CCDs, Bubble memories, etc.). This

application depends on technological improvements of the

foregoing memories. The major user of the large serial

memories will be data base systems. Therefore, on-line ar-

ithmetic can provide instant processing capabilities for

such a data base system.

As a final word, on-line arithmetic is complementary to

other approaches that are used to achieve concurrency in ex-

ecution of algorithms. For example, it can be used in

minimal-depth tree-structured networks. In particular, the

use of on-line arithmetic in non-linear recurrences systems

would be advantageous [ERC 80). They are very attractive in

reconfigurable networks because of high modularity and sim-

ple interconnection.

16



CHAPTER 2

ERROR CODES

2.1 General Remarks on Error Codes

Computation without error remains an illusive goal of

considerable importance in certain critical applications

which require sophisticated and extensive computation with a

high degree of system reliability. Recent advances in solid

state technology have provided individual devices with ex-

ceptional reliability. In some systems, this improvement in

device reliability has achieved sufficient systems reliabil-

ity. However, in others, the large number of devices re-

quired has negated the improvement in reliability at the

systems level. Such problems can be solved by the unlikely

development of a perfect device which never fails. In the

absence of such a device, one can expect greater use of the

techniques of fault-tolerant computing to obtain improved

systems reliability. Such improvements are not obtained

without degradation in performance or increase in cost of

the equipment, but in many applications, this tradeoff is

justifiable.

17



One of the major approaches to fault-tolerant computing

is the use of error detecting and error-correcting codes. In

a practical system there are occasional errors, and it is

the purpose of codes to detect and, perhaps, correct such

errors. These codes cannot correct every conceivable pattern

of errors but rather must be designed to correct only the

most likely patterns. Much of coding theory has been based

on the assumption that each symbol is affected independent-

ly, so that the probability of a given pattern depends only

on the number of errors. For example, codes have been

developed that correct any pattern of t or fewer errors in a

block of n symbols. Also, for those systems in which errors

may occur in bursts, some special kind of codes called

"burst error codes" have been devised. In the following sec-

tion we summarize the existing error codes with a special

attention to arithmetic error codes. We will be using these

types of codes throughout the rest of this dissertation.

18
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2.2 Types of Codes

There are two fundamentally different types of codes:

linear and non-linear codes. Between these two classes of

codes, linear codes are more important and, because of this,

have a well developed mathematical theory. In our review of

error codes we only deal with a subset of all linear codes

and therefore from now on we restrict our attention only to

this class of codes. Linear codes are in turn divided into

two classes: block codes and tree codes. The encoder of a

block code breaks the continuous sequence of information di-

gits into k-symbol sections or blocks. It then operates on

these blocks independently according to the particular code

to be employed. With each possible information block (k-

symbols) is associated an n-tuple where n>k. The result, is

now called a codeword. The quantity n is referred to as the

code length or block length.

The other subset of linear codes, called a tree code,

operates on the information sequence without breaking it up

into independent blocks. Rather, the encoder for a tree

code processes the information continuously and associates

each long information sequence with a code sequence into 1-

symbol blocks, where 1 is usually a small number. Then, on

the basis of this 1-tuple and the preceding information sym-

bols, it emits an m-symbol section of the code sequence. The

name "tree code" stems from the fact that the encoding rules

19



for this type of code are most conveniently described by

means of a tree graph.

Of the two classes of codes, the older block codes have

a considerably better developed theory. The reason for this

seems to be that block codes are more closely related to es-

tablished, relatively well understood, mathematical struc-

tures. As a result, considerably more research has been done K
on them than on tree codes [PET 72). Block codes are in turn

divided into three basic subsets: Cyclic Codes, Non-cyclic

Codes and Quasi-Cyclic Codes. Among these three categories

we are interested in a subset of non-cyclic codes which are

called "Arithmetic Error Codes". These codes differ from

all those previously stated in that all operations are ordi-

nary arithmetic. These codes are practical: they can be used

for data transmission with encoding and operations performed

by a general-purpose computer or they can be used to check

the operation of an adder. There is an interesting similar-

ity in structure between arithmetic codes and cyclic codes.

Residue, Inverse-residue and AN codes belong to this class

of codes. Figure 2.1 summarizes the relation among different

error-codes in a hierarchical manner.
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2.2.1 Arithmetic Error Codes

An arithmetic code for us is a redundant representation

of numbers having the property that certain errors can be

detected and/or corrected in arithmetic operations using

these codes. The representation is redundant in that the

number of digits used for representing a number in a coded

form may be larger than the minimum niumber of digits re-

quired if no error control is desired. The fundamental ar-

ithmetic operation is addition. Therefore, any useful ar-

ithmetic code must at least have the capability to check ad-

dition. Preferably, all other elementary operations, such as

multiplication and division, should be checked as well.

To represent the set of integers Zm =(O,l ......m-l1, in

the radix r system, the number of digits required, k, is the

smallest integer greater than or equal to log rm . Instead

of using k digits, as minimally required to represent Z m , a

redundant code uses n digits for some n~k. This may be in

the nature of adding an extra n-k digits as checks to the

non-redundant form of k digits; or it may be to denote each

numer 4Zm by a product AN for some constant integer A.

Since these codes are used in checking arithmetic opera-

tions, it is important to define how these operations are

carried out on redundant forms. Depending on how a number

N.4Z is represented as an n-tuple or how arithmetic is per-m

formed on the codewords, the codes are classified as
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separate or non-separate, and as systematic or non-

systematic.

Definition 2.1

An arithmetic code, which has each codeword represented

by, say, n digits is systematic if there exists a set of k

digits (k<n) of the codeword representing the information

and the remaining n-k digits representing the check(s).

A systematic code may treat the two parts, i.e., the

information digits and the check digits, separately for the

purpose of addition, thereby defining two or more indepen-

dent addition structures, one for the information and the

others for the checks; or it may treat each codeword as a

single operand (or number) and define uniform addition rules

for all n digits except perhaps for some end-around carries.

A systematic code of the former type is called separate, and

the latter none-separate. A similar division into separate

and nonseparate classes can be made for all codes. Based on

the preceding, arithmetic codes fall into these three major

classes: 1) AN codes which are nonsystematic and therefore

nonseparate; 2) separate codes with one or more residue

check, for example (N, N mod A) residue code; and 3) the

systematic subcodes, which are also called systematic non-

separate codes. The AN codes were first introduced by Dia-

mond [DIA 55], and their detection and error correction pro-

perties were discussed by Brown EBRO 60) and Peterson [PET
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72]. The separate codes using a single residue check, such

as (N, N mod A) code can only provide error detection for

all arithmetic related operations, but not correction and,

therefore, are of limited value [RAO 72). In order to ob-

tain error correction by use of separate codes, two or more

residue checks are required, and that has led to the intro-

duction of multiple residue codes EAVI 67, AVI 69, RAO 70).

The systematic subcodes appear to have error detection

and/or correction properties similar to AN codes while

preserving the advantages of systematic codes.

2.2.2 Low-Cost AN and Residue Codes

In an AN code, a given integer N is represented by the

product A*N for some suitable constant A. A is commonly

called the generator (and sometimes check modulus) of the

code. The search for values of A which have a low-cost

checking algorithm identified the class of low-cost arith-

metic codes which employ the check moduli of the form

A=2ai, with integer a>l. (2.1)

Il" is called the group length of the code EAVI 71). AN

codes with the check modulus 2-a_1 display an exceptional

adaptability to binary arithmetic and have a low cost check-

ing algorithm when the lengths of the operands are some mul-

tiple of the check length a.
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As was mentioned earlier in this section, residue codes

are categorized as separate codes. Indeed, Peterson proved

that a separate code, meaning a code whose information and

checks are separately processed, must be a residue code [PET

72]. The modulo A residue encoding for a number N attaches a

check symbol C(N) to form a pair (N, C(N)). The value of

CMN is:

C(N)=N mod A (2.2)

Where (N mod A)=INI designates the modulo A residue of N.

The most significant differences of implementation between

AN and residue codes are caused by the property of separate-

ness. For residue codes, the operands N 1 and N 2 and their

check symbols C(N ),C(N 2 ) enter separate (main and check)

processors which produce the main result N3and the check

result C(N 3 ). The checking algorithm computes (N3mod A) and

compares it to C(N3 ). If the values are equal, either the

correct result has been obtained, or a miss has occurred.

Disagreement indicates a fault in either the main or the

check processor. But for the nonseparate AN code the check-

ing algorithm computes (N 3mod A), where N 3 is the value of

the result. The case (N 3mod A)=O indicates either a correct

result or a miss. Note that the hardware cost of AN codes is

caused by the greater complexity of the main processor,

while for residue codes it is because of the need for a

separate check processor. The error detection and correc-

tion properties of AN and residue codes are considered in
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Chapter 5.
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CHAPTER 3

ERROR CODED ON-LINE ALGORITHMS

In this chapter we present the main result of this

thesis. our goal is to develop a set of error coded basic

algorithms for on-line arithmetic with the help of error

codes we defined in Chiapter 2 of this dissertation. As was

mentioned in section 1.2.2, on-line algorithms for the four

basic operations of addition/subtraction, multiplication and

division have already been devised and the relevant results

on this subject can be found in [ERC 75, TRI 77, TRI 78, IRW

77, GOR 80).

On-line algorithms have the property that if an error

occurs at a certain step of an algorithm and if this error

is detected immediately after generation and inhibited from

spreading to the next module, then the operation of the fol-

lowing units can be continued although with less precision.

of course the final results have correspondingly less preci-

sion than the original operands. This shows that on-line

algorithms have an intrinsic property of "graceful degrada-

tion". Of course, if there were some means of error correc-

tion, then this error would not affect the computation and

there would not be any loss of precision. Our task is to
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devise such algorithms with the capability of error detec-

tion and/or error correction.

In order to do this, we present two different schemes:

1)error detection with residue-coded operands, 2) error

detection/correction with AN coded operands. Figure (3.1) is

a general block diagram for an on-line unit with residue en-

coding.

zi

MAIN UNIT
JP~j - MOD "Avj,. I%1IzilA

yi
-CHECK

________UNIT 
N

X! X!

Y! RESIDUEIflY, ,[ lm UNIT 'z y

Figure (3.1)- Block Diagram of A Residue-Coded On-Line Unit

The operation of this unit is as follows:

Assume that the operands X and Y are represented by m digits

in a radix r redundant number representation system, that

is:

m -
X = M _ x i 

-

i- r (3.1)
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my1 L yir - (.2
i-i (3.2)

These two numbers flow through the MAIN unit digit-by-digit

most significant digit first. The algorithm which is run by

the MAIN unit (we call this algorithm "MAIN OP") is imposed

on the incoming operands and after certain amount of delay,

the result Z appears at the output, again digit-by-digit

starting with MSD, such that:

mZ= zi-i
i=l 1 

(3.3)

At the same time the RESIDUE unit receives the residue

of the corresponding digits of the MAIN unit. We represent

this "residue" operands by X and Y', such that:

= x' r - i
i=l 1 (3.4)

mY#= i: 1'i r - 1
- ir (3.5)

The following relation exists between these two sets of

operands:

x' i=ximod A for i-1,2, .... , m (3.6)

y'i=yimod A for i=l,2 ..... ,m (3.7)

where A is the check modulus and was introduced in Chapter

2. We call the algorithm applied by RESIDUE unit as "RESI-

DUE OP". The output of the RESIDUE unit, with a similar

manner, is represented by Z' and is:
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m

Z-=[ z'.r' 1  (3.8)i=l

Notice that the relation (z'i=zimod A) is not necessarily

satisfied.

After generation of zi and z'i , MAIN and RESIDUE units

start working on the next set of inputs. At the same time z.

11
and z' i along with some other information reach the CHECK

unit. CHECK unit operates with an algorithm we call "DETECT

OP". This unit after running the algorithm DETECT OP on zi

z' and other received information, decides whether these

results agree with each other or not. If the results do not

agree then it sets an error flag which inhibits all the

operations until the source of error is detected. For exam-

ple, the current step can be repeated by the MAIN and RESI-

DUE units and if the error still persists, the operation can

be continued with less precision. It is also possible to

correct this error if we use biresidue codes instead of a

single residue code EAVI 69, RAO 70]. In this thesis we do

not address the problem of error correction by biresidue

codes.

In the second scheme the operands X and Y are encoded

with AN codes. Encoding is done by simply multiplying each

digit of X and Y by a check modulus(A). Denote these encoded

operands by X' and Y' respectively. Therefore:
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Y'-A*Y

such that:

x. A*x. for i-1,2 ..

y g.A*Y. for i l 2 . . ,

The algorithm which operates of X' and Y, is the same

as that for residue encoded operands (Algorithm MAIN~ OP).

The output digit selection process in this algorithm should

be such that the correct output digit (z'.i) is divisible by

A. Therefore each single digit of the encoded operands and

the results can be checked for divisibility by A. If any of

these digits is not divisible by A, then it does not belong

to the correct digit set and an error has occurred. The

overall organization of the AN coded on-line unit is shown

in Figure 3.2.

In this case we only need one MAIN4 Unit and the

corresponding CHECK Unit which tests the operands and the

results for divisibility by A.

This method has the following advantage over the resi-

due encoding. If A is chosen appropriately then error

correction is also possible in this case. We briefly men-

tioned that in order to correct single errors in the residue

scheme we have to use biresidue codes instead of a single
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flj
MAIN UNIT CHECK UNIT RESTORE qj

Figure (3.2)- Block Diagram of an AN-Coded On-Line Unit

residue code. Note that the hardware cost of AN codes is in

the greater complexity of the MAIN processor, while for

residue codes it is in the separate CHECK processor.
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3.1 Error-Coded On-Line Division

3.1.1 Residue Coded Operands

Assume that the dividend N and the divisor D are

represented by m digits in a radix-r redundant number sys-

tem. Also assume that the residue of each digit with

respect to a constant A (A-2a-l) is attached to it and is

transferred to the on-line DIVIDE unit. Therefore the coded

operands are:

(N,N')-.(nl,nl)(n2,n2) ....... (n mn'm)

(D,D ' )-.(dld l)(d 2 ,d'2), ..... ,(d ,d
m m

(Q,IQIA)=.(ql,lqlIA)(q2 ,1q2 lA ) ..... ,(qmqm'A)

ni t di and qi belong to the following symetric signed-digit

sets [AVI 61):

$I, U o ISt ai
n i  ,.., ,O..... (r-l) i° --r/2 (3.9)

di4 ,.-1, 0, i,., } (r-l). o 2r/2 (3.10)

qi4(-e ,...,-lO,l...,p (r-l) lp _r/2 (3.11)

The algorithm "MAIN DIVIDE" which is run by the MAIN Unit is

shown in the next page.
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Algorithm "MAIN DIVIDE"

Step 1 [Initialization]:

rmax -i
P 0 L nir

i=1

SmTaxd. 

D0 L.dQ.
For j-l,2 ..... m DO:

step 2 [selection]:

qj=SELECT (r~j I , Oj I )

Q j=Q j_,+qjr J

Step 3 [Input Digits]:

.-Dii+dj+r r

I :Dmax

Step 4 [Basic Recursion]:

-max -max

P . rP -. -q D +nj+ g r max_, dj+ r (3.12)
a max max

Step 5 [End Do]
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The algorithm run by the RESIDUE unit is similar to

this and is named "RESIDUE DIVIDE".

Algorithm "ESIDUE DIVIDE"

Step 1 [Initialization]:

SP

g max

i=l1

6maxD' £ d'ir 1

D d10

of 0 =0

For j-1,2 ..... m Do:

Step 2 [Selection]:

q'j.=SELECT(r'P'j-l, Do j-1
)

O' j.0 j-1 +q, jr,-

Step 3 [Input Digits]:

, ' r' max
jD j-d J+rmax

Step 4 [Basic Recursion]:

- max

P' .sr'P' j_ -q jD'j+nl + r

0.1dj+m ro max (3.13)-Q ~l d J+max r

Step 5 [End Do]
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r' is the radix of the RESIDUE unit which should be as

small as possible. m is the maximum of the on-line de-max

lays required by the MAIN and the RESIDUE Units and will be

defined later. Also n' and d' are defined as was ex-

plained before:

n' .=n.mod A for i=1,2 .... m1 1

d' .=d.mod A for i=1,2 ..... m
1 1

Therefore,

noi,d'iilqil,{4(0,l,2 ..... , (A-1)) (3.14)

The output of the RESIDUE Unit which is the quotient of

residues are assumed to be in the following set:

q o i I- ..... , -1 ,0, 1, .. . } (r '-l ) ie '>r '/2 (3 .15 )

In what follows we prove that the Algorithm "MAIN

DIVIDE" and similarly the Algorithm "RESIDUE DIVIDE" con-

verge to the correct value of the quotient.

Proof of Convergence

By induction on j in the basic recursion formula(Eq.

3.12) we get:

rmax . +max -6max
j1 -4 P =r nir -q Z d r +n1+9 r

i zmax
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max max _

2+ max 1-+i max 26max -
j-2 -P 2 =r2~ n ir l-rq, d ir- Iq 2  d dr1

r maxx -1 m ax

2rn+8 rq~ 2+8 i
i=l11

Continuing this procedure we obtain P. as follows:

max _i[+ a

P.=-r3 n.r'-rj~ 1  qir ii I .1

If j=m then:

m m -i mr- [-iP,,=r ?-n ir - rm[J12qir' i2d irI
m =l L=l'J ='

or

r-mP =NO*D

From this equation 0 is obtained:

N !M (3.17)
D D

Therefore, by devising a quotient digit selection procedure,

SELECT in step 4 of the Algorithm "MAIN DIVIDE" such that

1P lcDm
N

the quotient QW- can be computed to m digits of precision.D
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A similar proof is valid for the RESIDUE Unit:

j+ m+ax -i rf  i
Pe']J -=r'3~ nir - r' r - q ir

max

i1 d' r

i=1 1 J (3.18)

Ps--W -rs-m m(3.19)

N'
and assuming IP ml<D' then Q'= to m digits of precision.

3.1.1.1 The Error Detection Algorithm

The purpose of this section is to find an algorithm

that can detect an error at each step of the on-line divi-

sion process. This algorithm is run after generation of

qi and q'i by the MAIN and RESIDUE Units and will determine

whether these quotient digits are correct or not. If an er-

ror is detected then the current step is repeated, otherwise

the division process proceeds as usual.

From Equations (3.16) and (3.18) we have:

mJ+ax j. 6 m+ax[= qiri[ m djr-= nijrr-JP

and

Smr' 1  i 1 rmax 0i
q I d' r n' i r£ n r

i l ih 1 ] i=l 1

By dividing these two equations and getting the residues of
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both sides and also assuming:

Irl A=Ir' I=1 (3.20)

we get the following equation:

I'j4- I
Ij I lJ+max I

IIZII I Z nj+- I II-

i=l I(
Il l 1 1 1 1 1 1 (3.21)

In the equation above:

lxl=lxIA=x mod A

To simplify Eq. (3.21) the following change of parameters

are done:

ji I ij

I Kqil.=xj and I E q'iI =X'.

Ij+~raI
J+gmax max

i n' I =Y'" and I L nil = Y

\ 1 i Ii=l x

Therefore (3.21) becomes:

IIX 1*11y I -Ip .11 =1 IX, 1*11 I -IP 111~ (3.22)
1I I jill Ii I ) )I lk

The correctness of this equation is the test that we perform

to detect an error in the division process. The following

algorithm, run by the CHECK Unit, performs this test.
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Algorithm "DETECT DIVIDE"

Step 1 [Initialization]:

x =X' 0=0

max
Yo=1 K nii=l

S
max

Y O 1  1 - ' i
i=l

For j=1,2 ...... ,m Do:

Step 2 [Input Digits]:

x j= IXj_llqj IN

X j= IX'j_l lq' ji %

Y j ={Y j-l +j+ max I A

Y' .=IY J-
1 +n J+maxI A

P.and P'.
J J

Step 3 [Check for Error]:

Zj= IX*(Y' I- P'jI)I

Z ) j J j j-{P I%)

If (Zj Z'j) E=1, GOTO ERROR SUBROUTINE

Step 4 [End Do]
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3.1.1.2 Determination of a
_ _ ___________ - max

In order to have overlap between the adjacent selection

regions of the P.-D. plot, the minimum index difference (8):J )

for the case of redundant dividend and divisor is found to

be [GOR 80):

8=2+iogr 2(k +kk

o (2k-1)(-k' ) (3.23)

k,k and k are defined as:

r-

S S

k
r-1

r- 1

Since division in the RESIDUE Unit is performed with

non-redundant operands, we get [GOR 80):

S,=f2-logr , 2k'-  (3.24)

where k'=-- -. We define 8 to be the maximum of
r -1max

8 and 8'.

6max=MAX(8,8') (3.25)

3.1.1.3 Radix of The RESIDUE Unit

As was mentioned earlier, the radix of the RESIDUE Unit

is an important factor in the design of the error-coded un-

its. Because, as r' increases the amount of hardware needed

41



for the RESIDUE Unit increases. In the extreme case where

r=r' then the detection process is merely duplication of the

MAIN Unit. On the other hand there are some lower bounds for

r' that should be met. These bounds are calculated as fol-

lows:

Since residue digits (n'i,d i) are assumed to be in ra-

dix r' number system we have:

n' i,d' i_<r'-l

using Eq. (3.14) we get:

A-l(r'-l or r'>A (3.26)

from (3.20) and (3.26) we obtain:

r'-M'A+l for M'=1,2,.... (3.27)

and if we assume that A is a low-cost modulus (A=201-l) then:

r'=M'20-M'+l for M'=1,2,... (3.28)

also from (3.20) we get:

r=MA+l for M=1,2,... (3.29)

3.1.1.4 An Example of The Error Detection Process

The following is a numerical example of the error-

detection process when residue-coded operands are used.

Assume:
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r=1O,kink'-k'-5

r'-4,k'-

A33

using (3.23) and (3.24) we get 6=4 arnd 8.'4 respectively.

Therefore:

n id q14 5 ,,. .. ,0, 1,. .4, 5)

n'id'.4(0,1,21 for =,..m

q 4f,,0, 1, 21

Assume:

D-.550i-4

and

N-. 133401

Therefore:

D-. 220101

N'-.100201

using EG0R 80) we get the following rP.-D. plot for selec-
J 3

tion of the quotient digits of the MAIN Unit.
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Using the selection diagram shown in Figure (3.3) and

the Algorithm MAIN DIVIDE, the following table is obtained

for the operation of the MAIN Unit (Table 3.1).

------ +----------------------------------------------------
I I P . I . I D . I qI

--------- .---- __----- +--- ... +_ +
1 1 1.1266 1.2 1.54977 1 2
4------------------+---------------------------------
1 2 1.16646 1.23 1.549774 1 3 1
----------------- 4---------------------------------
1 3 1.015298 1.230 .549774 1 0 1
.------.-----------.----------- +----------------------
1 4 1.15298 1.2303 1.549774 1 3
-9----+----------4------------4------------------------
1 5 I-.1195221.23032 1.549774 1 i I

+-----------------4-----------4----------------------4-
1 6 1-.0956721.230322 1.549774 1 i I

4-----------------4-----------4----------------------4-

Table (3.1)- Results Obtained by the MAIN Unit (EX. 3.1.1.4)

According to this table:

Q=06=.230322

Figure (3.4) shows the selection diagram for the RESI-

DUE Unit.
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Similar to Table (3.1), Table (3.2) shows the results

obtained by the RESIDUE Unit.

--------------+--------------------------------------------

I j I P' 1 0 . 1 D'. I q'I.. I
----------------------- I-----I---- +

1 1 1.1002 1.2 1.2201 1 2 1
-----.----------- +-----------+----------------------

1 2 1-.0322 1.2"f 1.2201 1 1 1
4-----------------+-----------+----------------------.-

1 3 1-.1012131.212 1.2201 1 2i I
-----.------------.---------------------------------

1 4 1.022012 1.2121l 1.2201 I 1 1
.9----.------------.-----------.-----------------------
1 5 1.000013 1.2T-210 1.2201 I 0 1
----------------- +---------------------------------

1 6 1.00013 1.212100 1.2201 1 0 1
----------------- +---------------------------------

Table (3.2)- Results Obtained by the RESIDUE Unit

According to Table (3.2):

Q8Q016 =( .21-100) 4

The information needed by the CHECK Unit at the j-th

step of the algorithm are njnjq , q'j,IP i 1 and 1P'jiIA*

Table (3.3) is obtained by using the Algorithm DETECT DIVIDE

and summarizes the operation of the CHECK Unit for this ex-

ample.

Since Z j=Z0 for j-1,2,...,6 then all the operations

have been correctly performed or a miss has occurred.
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jY. I Y'. I z. I z'. z.=z'Ix------_--_I -_-- ---. __,___, ---- -- j__+_ -- __--

1 1 2 1 2 0 1 0 1 2 12 IcheckI
------------ +--------+--------+--------------------------------
12 1 2 I 1 I1 I 1 1 0 10 Icheckl

13 1 2 1 2 I 1 I 10 0 Icheck!

------------ +--------+--------+------------------------+--------14 1 2 1 0 1 1 1 1 1 0 10 IcheckI

1 5 I 0 I 0 I1 1 1 . I 0 1 0 Icheck I
------------ +--------+--------+--------+-----------------+--------
16 I 1 0 I 1 I 1 0 10 IcheckI
.----------- +--------+--------+--------.--------------------------

Table (3.3)- Results Obtained by the CHECK Unit.

Now assume that at step 3 of the 'MAIN DIVIDE' Algo-

rithm an error in the Multi-Input Redundant Adder causes the

partial remainder P3 (=0.15298) to be incorrect. Assume this

wrong result (P*) is:

P3=0.15296

Continuing the algorithm "DETECT DIVIDE" from step 3 we

get:

j=3

x3-12+01 A=2

X' 3 =11-2 IA=2

Y 3 -Ii+01 A=

48



I
Y' -11+01 A=1

Z3 -12"(1-1 ) IA=0

ZI 312*(1-2)I A=I

Since Z30Z' 3 this error will be detected by the CHECK

Unit.

When no error is detected by the CHECK unit, the

current quotient q. is delivered to the next on-line unit

along with its residue modulo A [notice that (qj mod A) is

not necessarily equal to q'j ]. These two constitute one of

the operands of the following on-line unit.
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3.1.2 AN Coded Operands

In the previous section we discussed the detection of

errors in an on-line divide unit when the dividend and the

divisor are residue coded. As was mentioned before, it is

possible to use AN coded operands for the purpose of error

detection and/or error correction. In this section we

present a summary of the proposed algorithms when AN coded

operands are used.

Again we denote the operands by N, D and Q for the

dividend, divisor and the quotient. Encoded operands are ob-

tained by simply multiplying each digit of the N, D and Q by

the check modulus A. Denote these encoded operands by N', D'

and Q'. The table of the next page shows the correspondence

between two sets of operands and the results. For the reason

which will be explained later, the digits of the dividend

(N) are multiplied by A2 instead of A EAVI 73].
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m m
D= nd i and N =  d r

i=l 1~

m mD~~l_ ir I and D'=i=-d' ir

Sm .m .~

Q= 1- qir-I and Q'= q'r 1
i=. i=l 1

and q' 4-Ap,.., 0,..,Ap) (3.30)

n. [-.. and
2 2 '

In .41-A ,..,-A 2
10,A 2  ,A p} (3.31)

I dj4(-p' ......• ,,0, i, ,p'l and

td o' j4 -Ap1' .. ,A,0 ... ,Ap ' (3.32)

k>D>1 - k ' (.l-r-m+l) and Ak',D'>Al - k (l-r-m+l)(3 33)

_ r n D r

k _ Qj > -k and Ak > Q'_ j > -Ak (3.34)

such that:

n j=A2 n .

d =Ad. for j=l,2,....m

q'j=Aqj (3.35)

The division algorithm which operates on encoded

operands is exactly same as "MAIN DIVIDE" Algorithm dis-

cussed in the previous section. Also the proof of the con-

vergence of the algorithm in this case is similar to what

was mentioned before. Following the same procedure we get:
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mo rm[ _, No -M P  m
pM =r ,-Q'D,] or - rm--4!-

Now if we prove that

P, mI<AD' (3.36)

The quotient to m digits of precision.

N' =A
2N N

Q' AD A- = AQ (3.37)

which is the correct result and shows the reason why we have

to multiply n. by A instead of A.

3.1.2.1 Selection of The Quotient Digits

One of the most important factors in the design of the

AN-coded division unit is the selection procedure. As was

mentioned before, selection is such that the correct quo-

tient is a multiple of the check modulus(A). With the help

of the basic recursion formula (3.12) and following the pro-

cedure given in [GOR 80] the bounds on partial remainder are

obtained:

kAD' .- A2 (k +kk')r > P' '-kAD' .+A2(k +kk')r -  (3.38)

By letting j=m in (3.38) we get:

AD'>IP' 1>-AD'-- m -

Therefore, Eq. (3.36) is satisfied and Q' is indeed the

correct quotient up to m digits. Also following the pro-

cedure given in [GOR 80] we get the following set of selec-

tion equations:
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(i'+Ak)D' A (k +kk')r- > rP'j 2_(i'-Ak)D'j

+A2(k ' +k k ' ) r - 6+ 1  (3.39)

This condition can be graphically described by means of

a P' -D'j plot EATK 68). It consists of a family of curves

which are linear function of D' with q'j as parameter rang-

ing from -Ap to +AP in steps of A. The area between maximum

rP'j and the minimum rP' will be denoted the q' j=i' region.

A given value of D' and rP' will correspond to a point in

an V- selection region. The quotient digit q'j is, there-

fore, i' and is used in forming the next partial remainder.

Figure (3.5) is an example of a full P' j-D'j plot with r=2,) j

k=k'=k =1, A=3 and 9=4.
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3.1.2.2 Determining The Minimum Index Difference

The minimum allowable value of 8 can be determined by

requiring that the lower bound of a q' j=i' selection region

and the upper bound for the corresponding q' j=i-A selection

regions intersect at the minimum value of D'. Therefore, by

using Eq. (3.39) we get:

r-6+l< 2k-1 (D')rin
-2A(k +kk') J (3.40)

From Eq. (3.33) assuming m--oo minimum value of D' is found

to be:

(D # -k'( jmin2A----

inserting this into Eq. (3.40) the worst case § is found:
IsI

2(k +kk') (3.41)8>2+l0gr(2k-l) (1l-k') (.41

By referring to EGOR 80] we find that this 8 is exactly the

same as that found for ordinary operands. Therefore the pro-

posed encoding does not change the minimum delay required.

3.1.2.3 An Example of Division With AN-Coded Operands

Assume:

I I

r=2, k=k'=k =1 and A=3

Also we assume that D is normalized (not pseudonormal-

ized). Therefore:
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(D j)min-l. 5

inserting this in (3.40) results in 6>4. Assume:

8=4

from Equation (3.30), (3.31) and (3.32) we get:

q'j 4 fT,o,31

n' 4 [1,0,9

kd' j ,0, 3)

and also:

3> D'

13> Q' j >-3

9> N' >-9

Plugging the given values in Eq. (3.39) the selection

regions are obtained:

j-18*2 -3  )q'9i' >(i'-3)D' +182
- 3

where i 4 (3,0,3)

Figure (3.5) shows the selection regions obtained from

this set of inequalities. Now assume the dividend and the

divisor are:

N-. 9,90995

D'-. 33"5303
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Following the "MAIN DIVIDE" algorithm shown in Section

3.1.1 of this thesis, Table (3.4) will result.

+------------------------------
I j I Pl - I Q' I D' l q' .1

- ------------------------- ---
I 1 .9909 1.3 1.33330 I 3 1
-- ---------------------------- +
1 2 1.0 1.30 1.335303 I 0 1
-- -------------------------- ---
13 1.0009 1.300 1.33"303 I 0 1
- -------.------------------------- +14 1.009 1.300S 1.33-5303 1 "Y
-- - - - - --- - - -------- ---- +

1 5 .090909 1.30033 1.333303 1 3 1
-- -------------------------- ---
1 6 1.00009- 1.300530 1.333303 I 0 1
--------------------------------
7 1.o009 I - I - I-I

-- -------------------------- ---

Table (3.4)- An Example of AN-Coded Division

According to this table:

Q6 - 300"30)2

By looking at columns two and three of the above table,

it can be confirmed that all the digits of P'j- and 0' are

multiples of the check modulus (A=3). Therefore, the neces-

sary condition for the correctness of the division process

is satisfied.
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3.2 Error-Coded On-Line Multiplication

3.2.1 Residue Coded Operands

Assume that the multiplicand (X) and the multiplier (Y)

are represented by m digits in a radix-r redundant number

system. Also assume that the residue of each digit with

respect to a constant A (A=2a-1) is attached to it and is

sent to the on-line multiplication unit. Therefore the coded

operands are:

(X,X')=(Xl,Xs )(x2 X1 . ( X,

(Y,Y)=(Y lY°I)(y2,Y'2)...(Yym,'m)

The product R is also represented by an m digit radix-r

redundant number. The residue of each product digit is also

attached to it while leaving the multiplication unit.

(R, IRIA)=(PIIPIlA )(P2,lP2 A)-..(PmIPmlh)

Since X and Y are assumed to be redundant, xi and yi

belong to the following digit set:

x i ' Y i 4 - , . , o , , . , }( 3 .4 2 )

X' and Y' are not redundant, therefore:

xI' ,i 0 pilk -4 [0,1I ..... ,(A-1)) (3.43)

Relation (3.43) is obtained from the definition of the resi-

due function.
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X and Y are assumed to be bounded by a positive con-

stant M such that:

M> X, Y >-M (3.44)

and similarly:

M'> X', Y' >0 (3.45)

The operands pass through a MAIN Unit which performs

the algorithm "MULT" given in Appendix C. The result R is

also in a redundant number system such that:

mR- K_ pir
- i1

i=l

and pi belongs to the following digit set:

P i 4 (-F, .... ,,0,1 ...... p (3.46)

note that P and p may be different.

The residuz digits pass through a RESIDUE Multiplica-

tion Unit. The same algorithm (MULT) operates on them, that

is, they are multiplied in an on-line mode. The product of

the residues will be designated by R' and is defined as:

m

R' £_ p'i.r' -i

i-I 4

and p'i belongs to the following set:

P'i 4 [-p',.. .,,,1,...,p' ) (3.47)

note that even though:
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X'i=IxI and y'i- ly i 'A
1 i A dy=I.

but p'i may not be equal to Ip.

Proof of convergence of the algorithm MULT for the MAIN

and RESIDUE operands is the same and is given in Appendix C.

3.2.1.1 The Error Detection Algorithm

The purpose of this section is to develop an algorithm

that can detect an error at each step of the on-line multi-

plication unit. This algorithm will be run after generation

of pi and p'i and will determine whether these product di-

gits are legal or not.

To derive this algorithm, from Eq. (C.8) in Appendix C,

we have:

r-JP .=X.Y-R (3.48)3j Xj j-l_

Following a similar procedure as that given in Appendix

C, for the RESIDUE Unit we get:

r I ]P' j.=X' jY' j-R' j-1 (3.49)
where X., Yj, X'j, Y', Rj I and R'j_ 1 are defined below:

X,- X x r- I and Y.j= i yir-l
3 ijl R il

J -i J-i

X's- X'ir and V L y'i r
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j-1
Rj1= i:pir- and R' j-= -i-1 i lP r

Taking the residues of X., , Yj andY' with respect to AJ ) J

we get:

IX' . I Z- x'ilr'IA

A i=l IA
if we assume IrlA=Ir' IA then:

Ixj.IA=ix' j

and similarly:

jA=IY' jIA

Rearranging Equations (3.48) and (3.49) we obtain:

r- JP. +R_ jY. j

r-3P "+R ' j- 1" .=x' jy'j

Taking the residues of both sides with respect to A:

I -jP I -l]Xj *1Yj I I
jr - ij IA+IRj-I IAIA-l I A* i IA '

=IIx' I* Y, I I
A* AIA

and

, IA+IR' I I =1IX - I AY IAIIr  A j-1 AIA I j A JI A

Therefore:
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r-IP j+lj hA I=Ir'-Jp' . +IR' I%1 (3.50)J SjI j j-lI "

This is the relation that we check at each step of the

multiplication algorithm for correctness of the MAIN and

RESIDUE Units. To simplify the checking process we assume:

Irl A= Ir'l A=l (3.51)

Therefore, (3.50) reduces to:

1 I j[+Ia IA I = 1P. IA+IR '  1 1 (3.52)i j- Ij.1 AIA I j A j-1 A (.

The algorithm of the next page is run by the CHECK

Unit. The inputs of this unit are (P., Pj 1 ) from the MAIN

and (P'j, p j 1 ) from the RESIDUE Units.
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Algorithm "DETECT MULT"

Step 1 [Initialization]:

RI=O, P0 O0

R'_1 =0, p'0=0

For j=1,2, .....,m+l Do:

Step 2 [Input Digits]:

Rj 1 = IRj_ 2 + P j_1 'A

R' jI=IR' j_2+p'Aj-I A

P . and P'

Step 3 [Check for Error]:

Zj=li IPj +R I
j I A j-l1A

z'.=IlIP'j 4 R' I1
j1 j A j-11A

If (Z#z' j) E=l, GOTO ERROR SUB

Step 4 [End Do]
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3.2.1.2 Radix of the RESIDUE Unit

The bounds on the radix of the RESIDUE Multiplication

Unit (r') is similar to that derived for the RESIDUE Divi-

sion Unit. For the corresponding formulas see Section

(3.1.1.3).

3.2.1.3 31ounds On Operands

According to (3.44) and (3.45) we have:

M> X, Y >-M

W> X. Y' >0

Since the operands of the MAIN Unit are assumed to be

redundant, from Eq. (C.22) in Appendix C we have:

2k-1 M_ --- rr(3.53)
4k

The case of non-redundant operand multiplication has

not been addressed in Appendix C of this thesis. But, for

this case with a similar derivation the following equation

has been obtained:

M k- (3.54)

Note:

After adjusting the operands of the MAIN Unit, if

X' and Y' are still out of bounds, multiples of the check
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constant (A) can be added to or subtracted from the digits

of X' and Y' without changing the results.

3.2.1.4 An Example of The Error-Detection Process

The following is a numerical example of the error

detection process when residue-coded operands are used:

Assume: [ "I
r=10, o=5 , o =9

r'=4, P'=2
A=3

From (3.42), (3.46), (3.43) and (3.47) we get:

xi, Yi 4.,8,9}

Pi 4

x' y' 4 [0,1,2}

P'i 4 [ , , ,I 2

Therefore:

5 '

k= , k = and k'=29 3

From (3.53) and (3.54) we get:

M<0.028 and M'<0.167

Assume M=0.01 and M'=0.167. The operands and their residues

are assumed to be:
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(X,X')=.(0,0)(0,0)(9,0)(4,2)(6,0)(8,1)(9,0)

(Y,Y')=.(0,0)(0,0)(9,0)(7,1)(2,1)(9,0)(6,0)

Using Eq. (C.21) in Appendix C, the following P-P plot

for the selection of the product digits of the MAIN Unit

will be obtained.
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2~11.46
1.46

0 1 V0.46  -
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1 -4.46

I"-5.46
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P =--5.54 p =5.54
j-1 j-1

Figr 3.6 - P-P Plot for the MAIN Unit
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Using the selection diagram shown in Figure (3.6) and

the Algorithm "MULT" given in Appendix C, Table (3.5) is ob-

tained for the operation of the MAIN Unit.

+ -------------------------------------
ii X. I Y I P I plI I I I

-------------------------------- +
I 1 .0 l.0 1.0 0 1
-------- I--------------+------------------+
1 2 1.0 1.0 1.0 1 0 1
--- -------.----------------------------
1 3 1.009 1.069 -.081 1 0 1

---------E- - - --+
--- +------------------------------

1 04 .9; I .00'7 1-.7138 I 1 1
+ -------------------------------------

15 1009Z6 1.00972 12.79488 3
+- - - - - - - -- - - - -- ------- ---- +

16 .00946 1 .00972'9 1-1.906772 1"+- - - - - - - -- - - - - - -------. . ----+

7 .009Z699 1.00972"96 .8055636 1 1 1
+- - - - - - - -- - - - -- ------- ----+

Table (3.5)- Results Obtained by the MAIN Unit (EX. 3.2.1.4)

Also:

P8=P 7 -P7=-0.1
94 4 36 4

R=0. 0001321

Therefore:

X*Y - 0.00013212144444
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Figure (3.7) shows the selection digram of the RESIDUE

Unit. Table (3.6) shows the results obtained by the RESIDUE

Unit.

From this table we get:

P' 8 =P' 7-p' 7= (0 .f2000)4

Therefore:

R'=.0000001

and

X'*Y'=0.00000011211000

Table (3.7) is obtained by using the Algorithm "DETECT

MULT" and summarizes the operation of the CHECK Unit for

this example.

Since Zj=Z. for j=1,2,...,m, m+l then all the opera-

tions have been correct or an undetectable error has oc-

curred.

Now assume at step 8 of the RESIDUE MULT Algorithm an

error changes the sign of the eighth partial product

EP'8 .(O.T211000) 4). The incorrect partial product (P'8) will

be:

P'8 (0.1211000)4

Continuing "DETECT MULT" from step 8 we get:
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2.333 (2.111)4

2

1.333 - (1.111)4

10.333- (0.111)4

I 1-0.667 - -(0.222)4

1-1.067 (-1.222)4

-2

-2.667
- (-2.222)4

-.1 -2.667 PIj- - 2.333

Flm .7 - P-P Plot for th. RESIDUE Unit
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+- - - - - -- - - - ----- - ---- +-

I j I X. I Y. I Pe JlpW l

+----- -- --- -- - --- - - ---- +-

1.0 1.0 1.0 o
-- - - - - -- - - - --------- €----+

12 1.0 1.0 1.0 01
-- - - - - -- - - --------- -----+

1 3 1.0 1.0 1.0 1 0 I
-- - - - - -- - - - --------- -----

4 1.0002 1.0001 1.0002 1 0 1
-- - - - - -- - - - --------- I----+

5 1.00020 1.00011 1.0022 1 0 1
-- - - - - -- - - - -------- --- +-

1 6 1.000201 1.000110 1.02211 1 0 1
---------------------------
1 7 1.00020101.00011001.2211 1 1 1
-----------------------------

Table (3.6)- Results Obtained by the RESIDUE Unit

j=8

R7 o10+1I A=1

R' =10+11 A=1

Z = 12+11 A=0

Z 8 = I+I A=2

Since Z8 8  this error will be detected by the CHECK

Unit.

If no error is detected by the CHECK Unit, the current

product digit (pj) is delivered to the next on-line unit

along with its residue modulo A. These two constitute one of
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--- + ..... + .. .. + ...... -..... -- II j IR.j_1 IR ' .j - 1I  z I Z,1 j-z' l I

I1 0 0 0 I0 Icheck I

I 2 1 0 1 0 1 0 1 0 Icheck I
----... +.....-....----+-----------+
1 3 1 0 1 0 1 0 1 0 Icheck I
----... +.....-....----+-----------+
1 4 1 0 1 0 1 2 1 2 Icheck I
------- +----------+-+----------+
1 5 1 2 1 0 1 1 Icheck I

-------------------------

1 6 1 2 1 0 1 0 1 0 Icheck I
------------ +-------------

7 1 0 1 0 1 0 1 0 Icheck I
------------ +-------------

1 8 1 1 1 1 1 0 1 0 Icheck I
+---+-+ -. . -....+....---------

Table (3.7)- Results Obtained by the CHECK Unit

the operands of the following on-line unit.
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3.2.2 A Coded Operands mninder

tepurpose of this section is to present AN Codes in

teprocess of on-line multiplication. As was mninder

lier, the operands and the results are shown with m digits

in a radix-r redundant number system. They are denoted by

X,Y and R for the multiplicand, multiplier and the product

respectively. The encoded operands are obtained by just

multiplying each digit of the operands by the check modulus

(A). Table of the next page shows the correspondence between

the two sets of operands and the results. NTote that since

each digit of the multiplicand and the multiplier is a mul-

tiple of A, then the product digits will be multiples of A 2

and not A. Therefore, at the end of each step each product

digit should be dividend by A to get the correctly encoded

product. If we assume that A is a low-cost modulus, this

operation will be trivial EAVI 73).
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m m
xr and X'- k- xi r

i=1'I i-i

m -i m
Y = yir and Y'- Z y'ir - 1

i-I i-ilI

m m
R= k- p r -  and R'- p' r -1

x i 4 [-(Do',..., O and

x 4 [-A',...,A, O,A,...,Ap'} (3.55)

{yi 4f-',..,,O,,...,P an

IYi 
(3.56)

p'i 4 [-AD......A2 , 0,A2  , A2P) (357)

-M< X,Y <M and -AM< X',Y' <AM (3.58)

and the relation between the corresponding digits of these

two sets of operands and the results are:

X' i=Axi

Y'i=Ayi iz1 .... m

p i2=A2Pi (3.59)
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The algorithm that operates on encoded operands is the

algorithm "MULT" shown in Appendix C. The proof of the con-

vergence of the algorithm to the correct value of the pro-

duct is similar to that shown for the algorithm "MULT".

Similar to Eq. (C.10) we get:

R'=X'Y'-r-m(P m-p M) (3.60)m m

By devising a product digit selection procedure SELECT,

in step 4 of the algorithm "MULT" such that:

IP _-p mI<A2 k (3.61)i i

R'=X'*Y ° can be computed to m digit precision. The least

significant half of the product is available as the redun-

dant output of the adder after iteration m+l, i.e.,

P m+l=P'm-PIm (3.62)

3.2.2.1 Selection of The Product Digits

Selection of the correct product digit is of great im-

portance in the design of the AN-coded units. Looking back

into Eq. (3.57) we deduce that the correct product digit is

always a multiple of the square of the check modulus.

Derivation of the bounds on the encoded partial product fol-

lows similar path as that explained in Appendix C. These

bounds are:
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A2 (rk-2Mk')> P'j _A2 (-rk+2Mk') (3.62)

selection equations are also represented by a P'-P' plot. It

consists of a family of curves which are linear function of

P' j- with p' as parameter ranging from -A2 to +A2p in

step of A2. The area between maximum P' . and minimum P'-

will be denoted by the p' j=i' region. A given value of

P'j-1 and P'j will correspond to a point in an i' selection

region. The product digit p'j is, therefore, i' and is used

in forming the next partial product. The following equation

shows these regions:

i'+A 2 k-2Mk'A 2 > (PI ' >i' -A 2 k+2Mk'A 2  (3.63)

when j=m in (3.63):

A2k-2Mk 'A2 - P'm-p 'm -A2k+2Mk'A2

and since Mk'A 2 0 then:

2 1 2A~ -Pm- m -

or

JP'm -p'm IA 2k

Therefore the relation (3.61) is satisfied by the a-ove

selection equations. This proves that R' is indeed the

correct product up to m digits.
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3.2.2.2 Bounds on Operands

Allowable values of M are obtained by requiring that

the upper bound of the p' j=i'-A selection region be always

greater than the lower bound of the p'.=i' region, i.e.

Ui - >  L i e
2-

i'-A

inserting the values from Eq. (3.63) we get:

2k-1 (3.64)

This is exactly the same bound we obtained in Appendix

C (Eq. C.22). Therefore, applying AN-Codes to the operands

does not change the allowable range.

3.2.2.3 An Example of Multiplication With AN-Coded Operands

Assume:

r=2, k=k '=l and A-3

applying Eq. (3.64) we get 1

assume M4. Equations (3.55) to (3.58) result in:

x,9 4 (,0,3)

P'i 4 {5,0, 91

inserting the given values into Eq. (3.63) we get:

i199 [qi'9i'i -_ii- 4 {,0,9}

Figure (3.8) depicts this set of equations.
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Figure 3. -P Plot for the AN-Coded Unit
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As an example assume that the multiplicand and the mul-

tiplier are:IX'= .0033503303S

Y'=. 0030303530

Following the steps of the algorithm "MULT" in Appendix

C, Table (3.8) will result.

------------------------------------------------------------

j I . Y'. P' Ip'.I
I I

---- ----------------------------------
11.0 1.0 .0 1o 

---- - - -----------------------------------
1 2 1.0 1.0 1.0 1 0 I
---------------.----------------------------------
1 3 1.003 1.00 1.00 I 0
----------------------------------- -------------
1 4 1.003 .0050 1.009 I 0
+--------------+---------------------------------
1 5 1.003-0 1.0003 1.0099- I 0 1
-----------------------------------------
1 6 1.003503 1.00030 1.09999 I 0 1
-----------------------------------------------
1 7 I .0033"033 1.0030303 .-900099 I 9 I
--------------------------------------------------
1 8 I.003303T3 1.00503033 1.09009099 I 0 1
-------------------------------------
1 9 1.003303330 1.003030333 1.90909009 I 9 1
------------------------ ------------
110 1003503T3303 .00330303330 1.900909999 1 q I
--------------------..-----------------

Table (3.8)- An Example of AN-Coded Multiplication

From this table we get:
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PI11'PI0 -p'lo (.0990900090)2.

arnd therefore:

V .'f=( .0o00-099O990900O90) 2

The necessary condition for correctness of the opera-

tion is satisfied because all the digits of the product and

partial product are multiples of the check modulus (A=n3).
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3.3 Error-Coded On-line Addition

3.3.1 Residue-Coded Operands

Assume that the summands A and B are represented by m

digits in a redundant number representation system (Eqs. D.1

and D.2). The residue encoded summands are (A, A') and

(B, B') such that:

(A, A')-.(al,a 1)(a2,as2 . (amoatM)

(B, B')=.(blfbl 1)(b2,be 2)... (bm,b'm)

The relation between A and A' (B and B') is:

a' .=Ia I

b'.=Ib I1
1 i

ai and bi are assumed to belong to the following digit set:
° |i ° #

ai,bi 4 (-p ,...,T,O,l,...,p } (r-l)2 _r/2 (3.65)

The following relation is obtained directly from the

definition of residue function.

a i,b' i  4 [0,1,...,(A-1)) (3.66).

The sum R is shown by m+l digits also in a radix-r

redundant number system (Eq. D.3). the residue encoded sum

is:
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(R, IR A)=(so, Is0  (8 1 S A  (s Is I

s. is assumed to belong to the following set:1

s. 4 (- ... ,lOl,...,el (r-l)> eo _r/2 (3.67)

A' and B' in going through the RESIDUE Unit generate a resi-

due sum which is represented by R' such that:

m

R'= Z s' ir' -
i=0

s' i is assumed to belong to the following digit set:

s -4',...,l,0,l,...,p' (r'-l)> ' >r'/2 (3.68)

The algorithm run by the MAIN and RESIDUE Units is the

algorithm "ADD" presented in Appendix D. Proof of the con-

vergence of this algorithm to the correct value of the sum

is given in the same appendix.

3.3.1.1 The Error Detection Algorithm

In this section the algorithm which should be run by

the CHECK Unit will be derived. CHECK Unit starts the opera-

tion after generation of si and s' i by the MAIN and RESIDUE

Units, respectively. It examines the necessary condition for

fault free operation of the MAIN and RESIDUE Units. Unless

this necessary condition is satisfied, the CHECK Unit stops

the operation and sets an error flag.
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To derive such an algorithm, from equation (D.9) of Ap-

pendix D we get:

j i j-2 i
2 (a.+b.)r- = _ sir + r-J+P.

i=l i=O j (3.69)

For the RESIDUE Unit we get a similar expression:

j j-2
J::2 -i -j+ip ,

x_ (a'. +b'i)r' = )_ s'1r + r(
i=1I =o j (3.70)

Taking the residues of (3.69) and (3.70) we obtain

(3.71) and (3.72).

I j • i I j-2 •I I
I ) (a'i+b')r-I = I Z sir-1 + r IP I AIIi=l 1 IA 11i=0 IA 1A (3.71)

and

I j _i I j-2 . I -j+l l
S£_ (a'i+b' )r''l = II I_ .r1 +r 1 P IA IIi=l 1 IA I i=0 1 IA J A, (3.72)

Assuming IrIA=Ir' 'A f from (3.71) and (3.72) we get:

11j-2 .1 I
1 1- sir- 1 + r-J+IPjA 1A
1i=0 JA A

I1j-2 -. r I
I K s' i r  I + r- j1 P' I I
liO 1 JA j A (3.73)

This is the relation that CHECK Unit verifies at the

end of each step. To further simplify the detection process

we assume IrIA=Ir' IA=1. As a result, (3.73) reduces to:
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lj-2 i i IIj-2 I I
1K LSl + IJ A I IA 1P lII (3.74)
ii-O 1IA PIA I - O IA L j 1 +~ IA

Defining the following dummy variables:

Ij-2 I
X j-2 I i

Ii-O IA

Ij-2 I
j-2 I E s'i

li-O 'IA
Eq. (3.74) becomes:

Ix +IP I I ' +Ip I 1 I (3.75)
I j-2 i IA 1 j j AIA

The algorithm "DETECT ADD" of the next page is run by

the CHECK Unit and verifies Eq. (3.75).
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Algorithm "DETECT ADD"

Step 1 [Initialization]:

X_-2 -0, X, -2-0

For j-,2, .... ,m+2 Do:

Step 2 (Input Digits]:

X j-2= IXj-3 +j2 1A

X 1 j 2  Ix j_3's 3-2 A

IPjIA and IP'jIA

Step 3 [Check for Error]:

Zj_ 2 IXj 2 +IPj IAI h

Ze j-2-1X' j-2 j'AIA

If (ZJ- 2  0 Z'j_2 )

THEN E=1, GOTO ERROR SUB

Step 4 [End Do]
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3.3.1.2 An Example of The Error Detection Process

In what follows a numerical example of the residue-

coded addition will be given.

Assume:

-i0, psme -9
Ir'-4, P'-3
A-3

Therefore:

I I

k-kink -1

From Eqs. (3.65), (3.66), (3.67) and (3.68) we have:

ai~bis i  (f19,8,...,,0 ,.,,9

a' i,bi 4 ,,21

sui 4 {"T,ol,,,2,3)

The encoded summands (A,A') and (B,B') are assumed to

be:

(A,A')-.(9,0)(2,2)(4,1)(7,1)(0,0)(5,2)

(BB')-. (8, 2) (4, 1) (3,0) (5,2) (6,0) (7, 1)

Following the algorithm "ADD" in Appendix D, Table

(3.9) will be obtained. This table summarizes the results

obtained by the MAIN Addition Unit during various steps of

the ADD algorithm. According to this table:
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--- +- --. - - - R- -

I P I Sj-1 Rj
--- -- -

1 1.7 1 2 12 I
----- - -- - -- - - -- - -- - -
12 1-2.4 1 i 1.81

----- -- --- - .---- --. --- ---
13 1-3.3 1 11.77 1

4 1-1.8 1 11.768
+---------------------

5 2.6 1 3 11.7683 1
- -----------------------------
1 6 1 -2.8 1 T 11.76827 1

+---------+---------------------
1 7 1 2.0 1 2 11.7682721
--------------------------------

Table (3.9)- Results Obtained by the MAIN Unit (EX. 3.3.1.2)

R=R7=1. 768272

Table (3.10) summarizes the results obtained by the

RESIDUE Addition Unit. From this table we get:

R'=R' 7=(0.312111) 4-( .231303)4

The information needed by the CHECK Unit are: sj-2

s'j , iP1A and IP'j I Table (3.11) is obtained by this

unit using the algorithm "DETECT ADD" and summarizes the

operation of the CHECK Unit for this example.

This table indicates that the necessary condition for

correctness of the operation is satisfied for every step of
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rH

4. - - - - -- - - -----4.-.-- +-

P'I i J I

4.--4-4-4-------

1 0.2 I 0 .0 1
----- - ---

1 2 1 0.23 I 3 1.3 1
-------------------------------+

I 3 1 -0.3 I 1 1.23 1
-------------------------------
14 11.3 I 2 1.232 1
-------------------------------

1 5 1 -1.0 I T 1.2313 1
-------------------------------
1 6 1 0.3 I 1 1 .23131 1
+---------.-----------.----------
1 7 1 -1.0 I Y 1.231303 1
4----------------------------------

Table (3.10)- Results Obtained by the RESIDUE Unit

the ADD algorithm (Zj- 2=Z1j- 2 for j=l,..,8).

In order to demonstrate the error detection capability

of the proposed scheme, assume due to an error in the

multi-input adder of the MAIN Unit, the sign bit of P6  has

been inverted. Such that:

P6 =-2.8 => IP61A=2

P6-2.8 = IP6IA=1

Following the "DETECT ADD" algorithm from step j-6 we

get:

J=6
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----------------- - -----------------------

--------- - - --------------

3 0 I I 0 I chc I
--- --- -+ -. . - -. . -- -. . - -..... - -- - -+

- -+...+-..+-+- ---------+ ... 4I

1 1 0 I 2 0 1 2 I check I
+---- . . ..-- +..-- --------------
12 1 I 1 2 1 I check I

- - +----- -------------------

13 1 0 0 I 0 I 0 I check I
+---------+-.+-..- --------------
4 0 12 I 0 0 check I

----.. +.---+- +-------.-------------
15 1 11 1 1 0 1 0 1 check I
----+ -----. -----. ----+-----.----------

6 11 0 0 I 0.1 0 I check I
----....--- .---+-+---------------
17 1 11 1 1 0 1 0 1 check I

+ - - - - - - - - - ------ ------------.. . . .. .
18 10 10 1 0 J0 check I
--------------------- -----------------

Table (3.11)- Results Obtained by The CHECK Unit

X4 = I1+3 1 3=1

x'4 =119I 3=0

Z 11+113=2

Z'4=10+0 13=0

Since Z:,Z'4 this error will be detected by the

CHECK Unit.
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3.3.2 AN Coded Operands

In this section the imposition of AN codes on on-line

addition will be considered. On-line subtraction can be re-

placed by addition by just flipping the signs of the sub-

trahend digits. As before, the encoded summands (A' and B')

are obtained by multiplying each of their digits by the

check modulus.

m -
A _ (Aai)r - r-

-im

B'l= 2 (Ai)r-i= K b' r - i

i=o i0O

at. , b' and s' i belong to the following digit sets:

at 4 (-Ap' ..... ,O,A, . .,Ap' (3.76)

be 4 (-AD ,...,A,0,A,...,Ap 1 (3.77)

s'. 4 f-A,...A,0,A, ,Ap (3.78)

It is clear that:

Ak') A' >-Ak'

Ak ' B I >-Ak

A(k'+k )> R' >-A(k'+k )
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Algorithm "ADD", shown in Appendix D, is imposed on the

encoded operands A' and B'. With a similar derivation the

following relation will be obtaned:

R'=(A'+B') r - m ( m+CsM)

The sum digit selection procedure in step 4 of the al-

gorithm "ADD" should be such that the following relation is

satisfied:

IP m+i-S'm <Ak' (3.80)

Only in that case R' represents the sum of A' and B' to m

digits of precision.

3.3.2.1 Selection of The Sum Digits

Sum digits should be selected in such a way that they

are always multiples of the check modulus (A). Using the

basic recursion formula (Eq. D.8 in Appendix D) and follow-

ing a similar procedure given in that appendix, the bounds

on the correct partial sum will be obtained.

a' .+b'. a' .+b'.
rkA - r-i-1 > j -rkA -r (3.81)

The selection region i', is a region in which s' jl=i '

is a correct sum digit. This area is represented by the fol-

lowing inequality.
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a'.+b.S' a+jb=a
iI +kA > (P) >i'-kA - J (3.82)

In deriving this relation we have followed a similar path

shown in Appendix D for deriving Eq. (D.23).

In order to have overlaps between regions s' j.l=i' and

s j=i'+A the following inequality should hold:j-l

Ui,> Li,+A for all values of i[

The only requirement to satisfy this relation is k> I.
-2

Therefore, if the sum (R') is in a redundant number

representaion system, there are always overlaps between the

adjacent regions even if the summands are not redundant.

3.3.2.2 An Example of Addition With AN-Coded Operands

Assume:

r=10, k=k'-k =1, m=8 and A=7

From Equations (3.76), (3.77) and (3.78) we get:

a'i ib'i, s' i 4 [6-3,6,...,-,0,7,...,56,631

As a numerical example assume the summands (A', B') are:

A'=. (63) (56) (63") (2") (35) (14) (7) (63)

B'=.(63)(63)(3")(5-6")(42)(63)(14) (7)

Applying the "ADD" algorithm on these sets of operands,

we obtain Table (3.12). From this table the value of sum
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-----------

Iji P'. s* I
I I j- I

+--- -4 - - 4

I 1 1 (7).(56)1 14 1
---------------------------

1 2 1 (o). ('T) o
-------------------------
I3 1 (T8). ( -) 3S5 I

------------------------
1 4 1 (0).(42)1 7
---------- 4---------------

5 I(T ).()l -) F I
+------------------------
1 6 1(14).(7) 1 14 1
------------ +-------------+
1 7 1 (0).(63)1 7 1
----------- +--------------

8 1 (o).(o) 1 0 1
+------------------------
1 9 I (o).(o) 0 1

+------------------------

Table (3.12)- An Example of AN-Coded Addition

is:

R'=(14).(0)(3--5)(7) (2T)(14)(7)(0)(0)

the necessary condition for the correctness of the

operation is satisfied because all the digits of the sum and

partial sum are multiples of the check constant (A-7).
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CHAPTER 4

IMPLEMENTATION CONSIDERATIONS

In this chapter a hardware organization of the proposed

error-coded on-line units will be presented. In Chapter 3 we

proposed two methods for detection and/or correction of er-

rors in an on-line unit. These methods were: 1) use of a

residue unit along with the residue coded operands, 2) use

of AN coded operands along with one (MAIN) unit and the

corresponding CHECK unit. It is obvious that in the first

case a CHECK unit is also needed to compare the results of

the MAIN and RESIDUE processors.

The operation of each of these units has already been

explained in Chapter 3 (see the corresponding block di-

agrams). It is the purpose of the current chapter to consid-

er the hardware realization of each of these units. At the

end, using this realization an estimate of the gate and

memory requirements of the error-coded on-line unit will be

given. In order to do this, we start with the operation of

a residue-coded divide unit. The extension of this work to

other basic operations (addition/subtraction and multiplica-

tion) is straight forward and will not be considered in this

thesis.
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4.1 Design of The Error-Coded Division Unit

As we mentioned in previous chapters, a residue-coded

on-line division unit consists of the following elements:

1. A Radix r (=2 k) MAIN Unit

2. A Radix r' (=2 ki) RESIDUE Unit

3. A CHECK Unit

In what follows the hardware design of each of these

components will be considered and an estimate of the cost of

each unit will be given.

4.1.1 Design of The Residue-Coded MAIN Unit

The design of the MAIN Unit when no error-detection

scheme is used has been given in the Appendix A. In this

section we modify this design to make the same unit suitable

for the case when residue coded operands are used.

From the algorithm "DETECT DIVIDE" in Chapter 3 it is

clear that the residue of the partial remainders P.i and P'

are needed by the CHECK Unit at every step of the on-line

division algorithm. These residues should be obtained by

Processing Elements inside the MAIN and the RESIDUE Units in

such a way that the modularity of the units is preserved.

Having this in mind, the following scheme for determination

of 1PPI A and I' I A is proposed.
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Calculation of The Residues of Partial Remainders

From the description of the hardware design of the Pro-

cessing Elements (PE's), we know that partial remainders are

represented by m digits. Each PE contains one digit (radix

2k) of the interim partial remainder (w j )) and the

corresponding transfer function (Tij)) such that:
° •2.

m ( ) =  J)+ .!j )  r

3 i=l 1 1 (4.1)

and similarly:

(J)r i m [W (J)+T' j )  -m- P'i - i . r'iu
P'J~~li=l (4.2)

Therefore:

m I

PI Iw I ) DIA+~ A (4 3)

I M I
j I= I (j) I J)i IA I

ti=l i

Assuming Irl A= Ir A 1l we get:

I i A I A
1 lP I- IA

A=1 A 1 AIIi=1 1 IA

where R j ) is defined as:

R(J)=TIwfj ) A+T(J)Il I (4.5)
1 1 i A I AIA

Using Eq. (A.9) in Appendix-A we get:
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R(~J) lw(J} K I A ji  +Iti (J IA + It iP 2 (  I
1A ti A  (4.6)

R!j ) s are computed by Processing Elements. These
1

residue digits [c bits each] are sent to the CHECK Unit.

This unit adds these residues and finds the residue of the

result in order to obtain IP.I according to Eq. (4.4).
jA

PE obtains R(J) by adding the residues of the values
i  i

in RW, TA, TPl and TP2 registers and finding the residue of

the result (Eq. 4.6). These values are obtained as described

next.

Computation of wi  =

Since w! j ) is a radix-r Sign and Magnitude digit (k+l
1

bits), its residue is obtained simply by a two-stage ROM

device with the capacity of:

M x[2 k+20 + I bits (4.7)w

p_(J) P2(J)

Computation of ti  and ti

These two transfer functions have a similar form and

consist of kk-1) magnitude bits and one sign bit. They are2

.in the following form:
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0 0 0 (K-1) BITS

SIGN BIT

(K-1) BITS

pIl(J) P20J)

The residues of t. and t. are obtained by sim-1 1

ply finding the residue of each row and adding them togeth-

er. This scheme is shown in Figure (4.1) for A-3. There-

fore, the total ROM needed for this process is:

MTPI=MTP 2 = [2+i +2x+2 ...... +2k-I ]= +2 2k - I 
+ 2 k-2

+..... +2k-a] + K.2a[ + 1

This expression reduces to:

MTPM TTP2=a[2 k + 1 - 2 + I -12k-J+ 2 +1 (4.8)

The time required for this process is:

tTPl tTP2- 3tM (4.9)

where tM is the read time of a ROM device.
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Computation of

tA. ) is the transfer function out of the Multi-Input
1

Adder (MIAD) and is represented by (2k+l) redundant binary

digits ( 4[1,0,1) ).

A(j)wihrsetoIn order to obtain the residue of t i  with respect to

A, (2k+l) digits of it are grouped into groups of 2 digits

each. The residue of all groups are obtained simultaneously.

the results are grouped again and this process continues un-

til the residue of tA ( j ) is obtained. This scheme is showni

in Figure (4.2) for k=8 and A=3.

Number of levels required is:

L-[10g2 (2k+l) (4.10)

Therefore, the time required for this process (t TA) is:

t TA=LtM=[log 2 (2k+l)ltM (4.11)

The memory required (MTA) is:
MAk4, +l24 .k 2x .k 2a cx

M-k2 *2 .+2 2}TA cx~2 kx c + .2

This function can be approximated by:

M =32k +**k (4.12)TA 2

According to Eq. (4.6) these residues should be added

to obtain R~j ) inside the i-th Processing Element. The fol-

lowing organization is proposed to perform this modular ad-

dition.
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w j) IA

MOD -- 4w)

Iti A R

The memory required for this process (MADD) is

MADD cz [3"2 ]=3z 22 (4.13)

Therefore, the total ROM required to obtain R! from i

w j. and T. j  according to Equations (4.7) , (4.8) , (4.12)

PI 0

and (4.13) is:

22

The time required for this process is:

t =a(3(19 (2))2t (4.15)
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4.1.2 Design of The RESIDUE Unit

Since the RESIDUE and the MAIN Units are similar, from

Eq. (A.30) in Appendix-A we get:

GPE'-64k'2+157k'+123 (4.16)

and also the pin requirements of a Processing Element of the

RESIDUE Unit is:

PPE,=13k'+ 9

The amount of memory required to compute R'i ! from

w ' ( j ) and T
' ( j ) similar to Eq. (4.14) is:

MRe x 2k's[5-2
-c+1 ] +, [8k'+2( -2 + +

x2 k+4 +32k' (bits) for k'> +1 (4.18)2

and also the time is similar to Eq. (4.15).

4.1.3 Design of The CHECK Unit

The CHECK Unit receives its inputs from the MAIN and

RESIDUE Units. These inputs include:

1. The corresponding digit of the dividend and its residue

(n i and n' i)

2. The corresponding digit of the divisor and its residue

(di and d' i )

3. Output digits of the MAIN and RESIDUE Units (qi and q'i )

4. R! J ) and R' j ) from the corresponding PE's of the MAIN
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and RESIDUE Units.

These inputs are shown in Figure (4.3).

OUTPUT DIGITS

qi q

lVR~4 2
2IRW

FROM MAIN UNIT

Mm
CHECK UNIT 1 E

INPUT DIGITS

Figure (4.3)- Inputs to The CHECK Unit

The numbers shown on the block diagram belong to the case

where r=10, r'=4 and A=3. In this case:

Total Number of Inputs =4m +18 (bits)

Inside the CHECK Unit R j ) 's  are added to generate

11Pj A and R'(Jg's are added to generate Therefore,
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by looking at the algorithm run by the CHECK Unit (Algorithm

"DETECT DIVIDE" in Chapter 3) the block diagram of this unit

will be obtained as shown in Figure (4.4).

In what follows the hardware implementation of each of

the components of the CHECK Unit will be considered.

Block No. 1

This block adds n'j+s Cx bits] to YjCI[ bits] and ob-

tains the residue of the result. Therefore:

(
time required =tl=tM

ROM needed =2
2 *(x (bits)

Blocks No. 2 and 4

These two blocks are similar and their hardware re-

quirements are:

t 2=t 4=2t M
M2=M4=[2 k++2 2(j (bits)

Block No. 3

This block adds q'j (k'+l) to X'j_1 [x bits] and ob-

tains the residue of the result.
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t 3=2t M

M3=[2 k'+l +22x]* (bits)

Blocks No. 5 and 6

Block 5(6) subtracts IPjIA (1p'jIA) from Yj (YEj) and

obtains the residue of the result. Therefore:

M 5 =M6 =2
2,x*(x (bits)

t5=t6=tM

Blocks No. 7, 8, 9 and 10

Block 7(8) multiplies two digits of at bits each. Block

9(10) obtains the residue of the result. Therefore, the com-

bination of blocks 7 and 9 (8 and 10) requires the following

amount of hardware:

M 7+M9=M8+Mo=22cx*x (bits)

t7+t 9=t 8+tl10=t M

Block No. 11

This is a simple comparator which compares two residues

of cx bits each. This block can be implemented by a level of

exclusive OR's followed by an OR gate. Therefore, we need cx

XOR's and one large OR gate. Assuming 3 gates per XOR and

two gate delay for each we find:
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Blocks No. 12,13,14 and 15

Block 12(13) adds m operands of ( bits each. Block 14

(15) obtains the residue of the result. The combination of

these two blocks is realized by levels of ROM devices as

shown in Figure (4.2). The number of levels required is:

L=l 02m1  (4.19)

Figure (4.5) depicts this organization when m=8 and

A=3.

The number of modules required for this process is:

No. of Modules =1+2+22+ ..... +T = m-i

Therefore, the memory required is

M 1 2+M 1 4 =M1 3+M 1 5 =(m-1)*2
2
C*c (4.20)

From (4.19) the time required is:

t1 2+t 14=tl3 +tl 5=L*tM=[log2m tM (4.21)
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4.2 Cost of The Residue-Coded Division Unit

We assume that the number of gates and the amount of

memory required for a unit is an indication of its cost.

Therefore, in this section the overall gate complexity of

the residue-coded on-line division unit will be considered.

4.2.1 Cost of The MAIN Unit

The number of gates required for a Processing Element

of the MAIN Unit is (see Appendix-A, Eq. A.30):

GPE=6 4k2+157k+1 2 3  (4.22)

On the other hand incorporation of error detection

schemes requires addition of extra hardware to each Process-

ing Element. This extra hardware is in the form of a ROM

module added to each PE. The capacity of this ROM (MECPE)

is given by Eq. (4.14). Therefore the hardware requirements

of each residue-coded Processing Element is:

G2GEC-PE=GpE=64k2+157k+123

MECPE=MR=x 2k[5-2-M
+ l] + a[8k+2 2

2I kx+42 +2~1

+4t 22= k+4 +32k (bits)2 (4.23)

Since the MAIN Unit is composed of m PE's, gate and

memory required for this unit is:
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SGEC-MAINmG EC-PE

MEC-MAINmMEC-PE (4.24)

4.2.2 Cost of The RESIDUE Unit

The only difference between the MAIN and the RESIDUE

Units is in their radices of implementation (r and r').

Therefore the total cost of the RESIDUE will be given by an

equation similar to (4.24) . That is:

GECRESmm(64k' 2+157k'+123)

M EC-RESmmx 2k # [5-2 - - + ]+xE[8k'+2(2 -2 + I I

+ 22( k'+4 +32k') (bits)
2 (4.25)

4.2.3 Cost of The CHECK Unit

Hardware requirements of the CHECK Unit can be obtained

by adding the hardware needed for each of its components.

Looking back to Section 4.1.3 we get:

15
MCHECK=i), M.i

GCHECK-G 11

tCHECK=MAX(t 12+t 14 , t4 )+t5+t7 +t9 +t 11
(4.26)

Using the values from Section 4.1.3 into (4.26) we get:
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MCHECKm2 ax E(m+3 )2
2( 2 k+l+ 2 ke

GCHECK= a l "

t t r2+ +~!n]436g (4.27)

REMARKS:

1. Time required by the CHECK Unit is independent of the ra-

dix used in the MAIN Unit and only depends on the required

precision.

2. In deriving Eq. (4.27) we have not put any restriction on

the check modulus (A). Therefore, this equation is valid for

all A's. But if we assume that A is a low-cost modulus

(A-20-l) then this results in simplification of the units

and a corresponding decrease in cost and delay.

Table (4.1) illustrates Equations (4.24), (4.25),

(4.26) and the overall hardware requirements of a residue-

coded division unit with respect to r and m.

112



ME 9

m

~~~~% ;i IMI

t a

113E



CHAPTER 5

PERFORMANCE EVALUAT ION

5.1 Code Performance

The purpose of this chapter is to analyze the effect of

imposing error codes on the existing on-line algorithms.

The economic feasibility of arithmetic error codes in a com-

puter system depends on their cost and effectiveness with

respect to the set of arithmetic algorithms and their speed

requirements. The choice of a specific code from the avail-

able alternatives further depends on their relative cost and

effectiveness values.

Arithmetic error codes are of special interest in the

design of fault-tolerant computer systems, since they serve

to detect (and correct) errors in the results produced by

arithmetic processors as well as the errors which have been

caused by faulty transmission or storage. The same encoding

is applicable throughout the entire computing system to pro-

vide concurrent diagnosis, i.e., error detection which oc-

curs concurrently with the operation of the computer. Real

time detection of transient and permanent faults is obtained

without a duplication of arithmetic processors. This

chapter presents the result of an investigation of the cost,
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speed, interconnection requirements and effectiveness of ar-

ithmetic error codes in on-line networks. We focus our at-

tention on the residue and AN coded division units. The

results obtained can be extended to other on-line operations

with the corresponding modifications.

5.1.1 Hardware and Interconnection Requirements

We define the "perfect unit" to be a unit in which log-

ic faults do not occur. The specified set of arithmetic al-

gorithms is carried out with prescribed speed and without

errors. For a given algorithm, word length, and number

representation system of the perfect unit the introduction

of any code will result in changes that represent the cost

of the code. The components of the cost are discussed below

in general terms applicable to all arithmetic error codes

EAVI 71].

1) Word length: The encoding introduces redundant bits

in the number representation. A proportional hardware in-

crease takes place in storage arrays, data paths, and pro-

cessor units. The increase is expressed as a percentage of

the perfect design. "Complete duplication" (100 percent in-

crease) is the encoding which serves as the limiting case.

In residue encoding, the residue of each digit with respect

to A is attached to it and should be carried along with the

corresponding digit. Assuming that the operands and the

115



results belong to a redundant number system we have:

x i4(-( ........- 1 .... (r-1)> _ pr/2

The corresponding operands in the RESIDUE unit belong

to the set:

x' .4[0,I,2 ...... ,(A-1)) A<r'

The number of bits required to represent xi is:

n= 11092 2(o1
Similarly, the number of bits required to represent x'i is:

n' mflog2A1

Therefore, all the data paths should be increased by the

factor of n'/n.

n'/n= log2A] / 11022 (5.1)

Also all the storage requirements of the units will increase

by the same factor.

When using AN codes, digits of all the operands belong

to the following set:

1i -Ap........ -A,O,A ........ ,Ap)

Therefore, the total number of bits required is:

n'- log2 2Ap3

and the factor by which the word length increases is:
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Lr-(n'-n)/n (5.2)

For example if:

r=10, P= 5 and A=7

Then:

n=4 and n'=7

This results in:

2) The Checking Algorithm: This test the code validity

of every incoming operand and every result of an instruc-

tion. A correcting operation follows when an error-

correcting code is used. The cost of the checking algorithm

has two interrelated components: the hardware complexity and

the time required by checking. The complete duplication case

requires only bit by bit comparison; other codes require

more hardware and time. Provisions for fault detection in

the checking hardware itself are needed and add to the cost.

In the residue scheme, the checking is done by the

CHECK unit and consists of comparing the outputs of the

RESIDUE and the MAIN units. This operation is performed by

the "DETECT DIVIDE" algorithm mentioned in Chapter 3. There-

fore, the only extra hardware we require for checking algo-

rithm is the CHECK unit. A sample block diagram of this unit

is shown in Section 4.1.3 of this thesis. By referring to

this figure, we note that the hardware required to imple-
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ment such unit is not complex at all. Also, in the next

section we prove that the checking procedure does not intro-

duces any delay into the operation of the on-line units.

3) The Arithmetic Algorithms: An encoding usually re-

quires a more complex arithmetic operation than the perfect

computer. This cost is expressed by the incremental time

and hardware required by new algorithm. As was mentioned

earlier in this thesis, the algorithms used by the error

coded units are not different from those used by the ordi-

nary units. Therefore, imposing error codes on on-line un-

its does not add any cost of this type. Also, note that we

do not require new algorithms for the residue units. The al-

gorithms "RESIDUE OP" are exactly the same as "MAIN OP" al-

gorithms, but they are run on the residue operands.

5.1.2 Time Requirements

Introduction of error detection schemes into the opera-

tion of an on-line divide unit results in increase of the

basic recursion step time (T STEP). This increase in time is

due to the following two factors:
(J)e (J)'si heit

1. Time required to compute R. 's and R'i  s in the i-th

on-line Processing Element (t r).

2. Time required by the CHECK Unit (Eq. 4.27)
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Time requirements of the MAIN on-line divide unit is

considered in Appendix B of this thesis. From Eq. (B.15) in

this appendix TSTEP is:

TSTEp=ts+tR=t s+tpE [8k+7 log2 (k+l) 1 +241} g (5.3)

Adding 1 and 2 above to this equation, the basic recur-

sion step time for the residue-coded units (TRCSTEP) will

be:

TRC-STEP=t s +tPE +tr +tCHECK (5.4)

The process of obtaining R. s can be started as soon

as the registers TPI, TP2,TA and RW are loaded with the

correct values. Having this in mind the graph representation

of TRCSTEP will be obtained as shown in Figure (5.1).

As this diagram indicates, while the CHECK Unit is exa-

mining the results of the j-th step, MAIN and RESIDUE Units

are in the (j+l)-th step. This is possible because for all

values of the radix (r) the following inequality is satis-

fied:

ts+tPE> t r+t CHECK for all r's (5.5)

This means that the results of the j-th step can be

checked by the CHECK Unit while (j+l)-th step is in pro-

gress. Therefore, there is no time penalty involved in in-

troducing the check procedure. That is:
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TRCSTEP- STEP3 [ k+7 [log2 (k 1+241 g (5.6)

The values of TRCSTEP for various values of k have'

been shown in Table (4.1). Clearly:

tECMAINT RC-STEpT STEP (57)

5.1.3 Cost and Delay Comparison

As was mentioned earlier, there is no time penalty in-

volved in using the error-detection schemes. The only penal-

ty that we have to pay is the extra hardware needed for the

RESIDUE and CHECK Units. In this section a comparison is

made between the cost of the residue-coded and ordinary on-

line division units. Table (5.1) has been obtained from

Table (4.1) and shows the gate and memory requirements of

the two units.

43 is defined as:

G RC-DIVIDE -G DIVIDE*100%5

GDIVIDE

Using this table the following results are obtained:

REMARKS:

1. 4 is not sensitive to the number of Processing Elements

(m).

2. 43 decreases as the radix of the MAIN Unit (r) increases.
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DIVIDE
RC-DIVIDE UNIT UNIT

m 4GG(%)
G RC- MRC G

DIVIDE DIVIDE DIVIDE

4 11095 6064 5644 100.1

16 19751 8112 14200 39.1
M-8

64 32503 12976 26952 20.6

256 49351 29360 43800 12.7

4 22183 liege 11088 100.1

M16 16 39495 15792 28400 39.1

64 64999 25232 53904 20.6

256 96095 56464 87600 12.7

4 44359 23536 22176 100.0

16 78963 31440 56800 39.1
m-32

64 127 K 49744 107808 20.6

256 192 K 108 K 171 K 12.3

4 88711 46832 44352 100.0

16 154 K 62544 110 K 40.0
M-64

64 253 K 98768 210 K 20.5

256 385 K 213 K 342 K 12.6

Table 5.1 - Compiison of The Ge and Memory Requiements
of The RC-Divitde d Divide Units
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This implies that it is beneficial to use higher rad-

ices for the MAIN Unit. Also it is clear that in order for

the design to be economically feasible, the radix of the

MAIN Unit should be greater than the radix of the RESIDUE

Unit (r').
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5.2 Code Effectiveness

An arithmetic error occurs when a logic fault causes

the change of one or more digits in the result of an algo-

rithm. A logic fault is defined to be the deviation of one

or more logic variables from the values specified in the

perfect design. Logic faults differ in their duration, ex-

tent, and nature of the deviation from perfect values. The

effectiveness of an arithmetic error code in a computer may

be expressed in two forms: as a direct value effectiveness,

and as a design-dependent fault effectiveness EAVI 71].

1) Value Effectiveness: The most direct measure of ef-

fectiveness is the listing of the error values that will be

detected or corrected when the code is used. These values

are determined by the properties of the code and are in-

dependent of the logic structure of the computer in which

the code will be used. Value effectiveness for 100 percent

detection (or correction) of some class of error values has

been the main measure of arithmetic codes. For example, sin-

gle error detection (or correction) is said to occur when

all (100 percent) errors of value

±cr' 0(cr 0ci<m-1

are detected (or corrected) in an in-digit, radix-r number.

There is no direct reference for algorithms or their imple-

mentation. Codes with value effectiveness of less than 100

percent detection are useful when their cost is low and when
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other means of fault tolerance supplement the codes in a

computer.

2) Fault Effectiveness: The purpose of arithmetic error

codes in digital systems is to detect the occurrence of log-

ic faults. The detection enables the system to initiate

corrective action (error correction, diagnosis, program res-

tart, etc.). In order to assess the effectiveness of fault

detection, the value effectiveness of a code must be

translated into a measure of fault effectiveness for one or

more specified types of logic faults. The translation is

performed separately for every algorithm and requires an er-

ror table for every type of fault. The error table is gen-

erated from the description of the logic implementation of

the algorithms. The specified fault is applied to every

logic circuit which is used by the algorithm. Every applica-

tion yields an error value (or a set of error values) by

which the fault will change the perfect value of the result

to the actual (incorrect) value. The error table lists all

error values together with their relative frequencies of oc-

currence during the compilation of the error table. A com-

parison of the error table with the detectable error values

of the given code shows which entries of the error table are

not detectable. Therefore, the fault effectiveness of a code

with respect to the given algorithm and the specified fault

is the percentage of all occurrences of this fault which

will be detected (or corrected) when the given code is em-
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ployed. Less than 100 percent fault-effective codes are of

interest when their cost is low, because other methods of

fault tolerance can be used of reinforce the code. If the

fault-effectiveness for an algorithm and a given fault is

not sufficient, it may be improved by redesigning the imple-

mentation of the algorithm to eliminate some or all of the

undetectable entries of the error table [AVI 71].

5.2.1 Error Detection Analysis for Residue Encoding

In this and the following sections we focus our atten-

tion on the error-coded on-line divide unit. Error detection

capabilities of this unit when residue encoding is used will

be considered in this section and the following section ad-

dresses the same problem when AN codes are used.

By referring to the block diagrams of the MAIN and the

RESIDUE units shown in Chapter 4, the logic faults that can

happen in the error-coded units can be divided into two

parts:

1) Logic faults that occur in the SELECTION blocks of the

MAIN and the RESIDUE units. These faults result in the

selection of incorrect quotient digits (qj and q'j ).

2) Faults in the other parts of the units including faults

in Multi-input Redundant Adders, Operand Registers and the

digit transfer operation.

126



The proposed residue scheme cannot detect the first

category of errors, i.e., errors in the SELECTION Units. The

reason is that, errors in qj and q'j are compensated by

the resulting errors in the corresponding partial remainders

Pj and P'. . This is due to the step 4 of the "MAIN

DIVIDE" and "RESIDUE DIVIDE" algorithms. But this type of

error can easily be detected by the range test of the

corresponding partial remainders P. and P' . The follow-

ing theorem proves this claim.

Theorem (1): Any deviations of the selected quotient digits

from the correct value will result in a partial remainder

which is out of bounds.

Proof

The maximum and minimum values of the j-th partial

remainder (Pj) with non-redundant operands have been derived

in EGOR 80) and are:

kDj - r - &> P. >-kDj + kr -  (5.9)

Similarly, P' . is bounded by:

k'D' - r'- P' >-k'D' + k'r' -4  (5.10)

An error in either SELECTION units may increase (or de-

crease) the value of the j-th quotient digit qj=i (q'j=i')

by the amount of E (E'). Figure (5.2) shows a rPj-Dj plot

and the corresponding qj=i selection regions of the MAIN
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Figure (5.2)- A Sample rPj-Dj Plot

J ) -

Assume that the (j-l)-th partial remainder is in the

following range (shaded area).

Li+1.1 rPj_1 >Ui_ (5.11)

It is clear that the only acceptable value of the j-th quo-

tient digit is:

qj-SELECT(rPj_1 ,Dj_1 )=i (5.12)

Now assume that due to an error in the SELECTION Unit,

the actual (incorrect) value of qj is:
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qj~i+E (5.13)

The following two equations have been derived in EGOR 80):

( -r -8+i
Ui ( i+k )D j-r-r~

Ll=(i-k)D j+kr - s + I  
(5.14)

Inserting (5.14) into (5.11) we get:

(i+l-k)D j+kr 8 + > rpj_l >(k+i-l)Dj_ _  +  (5.15)

Using these maximum and minimum values of rPj_1 in the basic

recursion step (Eq. 3.12), the bounds on P. are obtained:J

MAX(P )=(i+l-k)D j-1 +kr-5+l -(i+E)D +(r-i)r - 9 (5.16)

MIN(P j )-(k+i-l)D j,-rS -(i+E)Dj-k(r-I)r 8  (5.17)

Assuming DjDj I  (5.16) and (5.17) reduce to:

MAX(P j )=(l-k-E)D .+kr -g+ I +r -  -r - 8  (5.18)

• -8+1 r-8+1 k- (5.18)
MIN(Pj)=(k-1-E)D.-r -kr +kr

The allowable values of 8 are EGOR 80):

r - k+ 1 -<  (5.20)
k+1 j

Inserting (5.20) in (5.18) and (5.19) we get:

MAX(P )=(k-E)D.-r (5.21)

MIN(P)i -(k+E)Dj+kr - 8  (5.22)

Clearly, when E-0 these bounds should be equal to those ob-

tained previously (see Eq. 5.9). But, when E#O, it is easy
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to prove that the resulting P. is out of bounds.

Case 1) E is Positive:

Assume:

MAX(Pj)=(k-E)Dj-r -  (5.23)-r

Inserting the value of L_ from (5.9) in (5.23) we get:

(2k-E)Dj.(l+k)r 8

Replacing 6 from (5.20) we get:

E > (5.24)
- r

p is defined to be in the following range:

r-l> , r

Using this relation in (5.24) results in:

E> 1 . (5.25)r

This means if E>2 then P. will be out of the correct
I

bounds. Note that the given derivation was for the worst

case and usually the smallest possible value of E (E=) will

generate a partial remainder which is well out of bounds.

This can be an indication of an error.

Case 2) E is Negative:

Similar analysis follows in this case and the result

is:
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E4-1 1(5.26)
-r

Therefore, in order to detect errors in the SELECTION

units, we can compare the magnitude of the resulting partial

remainders with the maximum and the minimum allowable

values. If this value is within the range then no error has

occurred. But, if it is out of bounds and the CHECK unit

does not indicate an error, then the SELECTION unit of the

corresponding module is malfunctioning.

The second type of faults that we are concerned about

are those that do not affect the selection function. They

may occur in other parts of the units including, the regis-

ters which hold the operands, multi-input redundant adders,

carry generation blocks and partial remainder registers.

These errors are detectable by the proposed residue scheme

as long as the value of the error is not divisible by the

check constant A. Referring to algorithm "DETECT DIVIDE"

this means if Z .7Z,' for j=1,2 ......,m.

Since the MAIN and the RESIDUE units are totally

separate, compensation of errors does not happen. But er-

rors will remain undetectable if they occur in only one unit

and 141 A=0 or in two units and 14 1 - 42A.

As an example assume an error in the multi-input redun-

dant adder of the MAIN Unit changes the perfect value of

partial remainder P. to an actual (incorrect) value P..*
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Therefore, referring to the algorithm "DETECT DIVIDE" we

have:

Z' =IX' *(Yj IP )I (5.27)

) j j- j A A

z.=IX.*(Y'. - P' )I A  (5.29)Jj j iA A

Subtracting (5.27) from (5.29) and taking the residues of

both sides with respect to A we get:

z.z1I ,ZI Ix *(Ip..p IA )1 (5.30)

j A= j- A= j j A A

The difference between P and P. is the error (4).

4--p j -p j

Inserting this in (5.30) we get:

*
Iz.-zo I =Ix' *,41 =Iix'. *-4 1 1 5.1j-ZjAA A=A* A (5.31)

Therefore, the error will go undetected if and only if:

Ix' I A=O

or

1.41 A=O
*

Because, when Z.=Z' step 3 of the algorithm "DETECT DIVIDE"

cannot catch the error.

For single error we have:

4=+Cr- j  P2 C >_1 MAIN UNIT
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4=+Cr'-j  '> C' >1 RESIDUE UNIT

Assuming IrlA=Ir' A=l we get:

141 =IC AA A

14' {A= IC ' 1 A

Therefore, single digit errors will go undetected if:

IC A=0 (5.32)

IC'I =0 (5.33)
A

But for the RESIDUE Unit the following relation is satisfied

(Section 3.1.3).

C'< < ' < A-I < r'-l (5.34)

From (5.34) we deduce that:

C' <A

Therefore, (5.33) can never be satisfied unless C'=0. This

proves that all single digit error in the RESIDUE Unit will

be detected by the proposed scheme. Similar errors in the

MAIN Unit may, in some cases, go undetected.

Assuming that each radix r(r') digit is shown by

[log2 rl (flog2 r'T) bits inside the machine, all single bit

errors are detectable as long as A is a low-cost modulus. An

Example of the error detection capabilities of the residue

encoding is shown in Section (3.1.4).

5.2.2 Error Detection/Correction Analysis for AN Encoding
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When AN codes are used in an on-line unit, the checking

procedure is simply finding the residue of each single digit

of the results, as they are generated, with respect to the

check modulus A. If the operation of the AN coded unit is

fault-free, then all these residues should be equal to zero.

A non-zero residue is an indication of the error. In Chapter

3 of this thesis we depicted the block diagram of an AN cod-

ed on-line divide unit. In this unit the check is performed

on the quotient digit (q' j) and the corresponding partial

remainder (P' j). Denote the number of bits required to

represent n' j, d' j and q'j by c', p' and Y' respectively.

Looking back into equations (3.30), (3.31) and (3.32) we ob-

tain:

S=[ =l0g2 2A2P' 1 (5.35)

P=[1092 2Ap'~ (5.36)

For instance q'j is represented by (Y'-l) bits for the

magnitude and one bit for sign. If 2's complement number

system is used, q'j can be represented by:

Y'-2

q' j=(xY,_lX-,2,0 2 ... X1 x 0 ) = -2 XY,_ + K Xk 2  (5.38)
k=0
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Error Detection

Single error detection requires that the minimum dis-

tance between coded numbers be 2, that is, no two coded

numbers be a distance 1 apart. Thus for all permissible q'i

and q'j (or n'i and n' or d'i and d'j)

q' i-q ' j--A(qi-q j )02
k

This can be assured by choosing A to be odd. The choice

A=3 will detect any single error in the binary representa-

tion of the operands and the results. Notice that this

detection of single errors does not depend on cx', ' and Y'

and therefore does not depend on the radix of implementation

(r). This means no matter how large cx', V' and Y' are, only

two additional bits are sufficient for detection of a single

error.

Error Correction

Error correction can also be done if the distance

between coded numbers is greater than 2. For single error

correction d=3 is sufficient. The following theorem speci-

fies the range of the numbers in which a single error can be

corrected using the check modulus A [PET 72).

Theorem (2): For any choice of A, if N is restricted to the

range
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2 2 - 2 2 (A,d) (5.39)

then AN code has minimum distance of at least d.

In case of division +p_ qi >-p and if d=3 then using

the above theorem:

(:)<I 2(A,3) (5.40)

As an example when r=10 and p=5 then A=19. There-

fore, if-we multiply every digit of the dividend (N) and the

divisor (D) by A=19 before sending them to the on-line

divide unit, then a single error in each of the quotient di-

gits (qj) can be corrected. An example of error-detection

with AN-coded operands is shown in Section (3.1.2.3).

An Example of Error Correction

i I

Assume r=10, =e'=D =5 and A=19 for single error

correction. From (3.30), (3.31) and (3.32) we get:I .4 [-1085........361,0,361......,1805)

dj q' j 4 [-96,-76,...,-19,0,19,...,76,96)

and

Pool f092 2A(]--8 bits

Therefore, q'j is represented by 8 bits inside the machine:

qj-x7 x6 , .. .. . ,x1 ,X 0
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A single error can be in any of these 8 positions and

Table (5.2) shows that all these single errors are correct-

able once the residue of q' (incorrect value of q' j) with

respect of A is obtained by the CHECK Unit.

+------------------ ---+
I i I bit in I Iq' I A I
I I error I I-------- +-------

1 0 1 x0  I 1,18
+----------------------+
I 1 I x1  I 2,17 1
+-----------------------+
121 x2  I 4,15 1
+---4--------------------+

3 x3  I 8,11 I
--------- I ------------

4 x4  1 16,3 I
+---4--------------------+
1 5 1 x5  I 13,6
------------------------
1 6 x6  I 7,12 1
--------- -------------+
1 7 1 x7  I 14,5 1
+----------------------

Table (5.2)- Single Error Correction

Since the residues shown in Table (5.2) are unique, a

single error in any of the 8 positions can be corrected

without ambiguity. The following is a block diagram of the

CHECK Unit for this example.
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RESTORE ME

Figure (5.3)- CHECK Unit With Error-Correction Capability

138



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis we have presented a method for detection

and correction of errors in on-line arithmetic algorithms.

This method is based on low-cost arithmetic error codes and

encodes each digit of the operands separately. The encoded

operands pass through the arithmetic unit digit-by digit,

most significant digit first. The proposed algorithms are

such that they preserve the codes, therefore each digit of

the result must conform with its code. In this way, and

depending on the code used, errors in each single digit of

the result can be detected or corrected. The need for such a

detection/correction scheme arises from the fact that on-

line arithmetic requires relatively long sequences of opera-

tions in order to achieve speed-up over conventional arith-

metic. Therefore, it is important to protect them against

hardware failures. If not protected, the hardware failures

could quickly contaminate large number of results in pro-

gress due to tight coupling of the steps at the digit level.

By detecting errors as they occur, an effective gracefully

degradable organization could be achieved. This means, error

at the j-th step would lead to restriction of precision

(significance) of the remaining steps but not catastrophic
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termination.

We presented two methods for such a

detection/correction scheme: 1) Residue encoding; 2) AN en-

coding. In the first method, residue of every digit of the

operands with respect to a constant is attached to it and is

sent to the on-line unit. Two separate processors# process

the operands and their residues. The result generated can be

checked for having the correct residue with respect to theI1

same constant. In this way, we proved that a single error in

each digit of the operands and the corresponding results can

be detected. Also, we proved that an error in the selection

of the result digits can be detected even without using the

proposed residue scheme. It is interesting to note that, no

new algorithms are necessary for the residue-coded operands.

The algorithms are the same as those developed for ordinary

operands. The only new algorithm that is needed is the one

used by the detection process.

In the second approach, each digit of the operands is

multipied by a constant before entering the on-line network.

This code is preserved throughout the network and each digit

of the final result can be checked for divisibility by the

same constant. We showed that depending on the check

modulus, a single error in each digit of the result can be

detected or corrected.
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The error-coded algorithms and a block diagram imple-

mentation of the corresponding units have been presented in

this thesis. A detailed design of a digit-sliced on-line

division unit was also considered. This unit was designed as

a set of basic Processing Elements (PE) each of which

operates on a single digit of the operands and the results.

kAssuming that the radix of implementation is r (=2 ), number

of gates required for one PE has been proved to be propor-

tional to k. Also, number of pins required is proportional

to k. In short, we showed that the number of gates vary from

350 to 5500 for radices 2 to 256.

Processing time of a PE is also an important factor and

was determined to be in the range of 39 to 116 gate delays

for the aforementioned range of radices. Finally, we extend-

ed this on-line unit to encompass the residue-coded

operands. We proved that the imposition of residue codes on

on-line division unit increases the gate requirements by no

more that 39%. The checking procedure can be overlapped with

the operation of the MAIN Unit and in that sense there is no

time penalty for introducing error-codes into the on-line

division unit.

There remain several areas of interest that need furth-

er research such as the extension of this work to other

functions such as logarithmic, trigonometric, and exponen-

tial. It is apparent that the E-method CERC 75) is a good

141



candidate for such an extension. It is believed that the

detection/correction procedure outlined in this thesis can

be applied directly in this and similar cases. Another

point of interest is the actual implementation of the on-

line processing units in VLSI. Also the simulation of the

proposed detection/correction schemes and experimental vali-

dation of the code effectiveness warrants further research.

142



REFERENCES

EATK 68) Atkins, D.E., "Higher Radix Division Using Esti-
mates of the Divisor and Partial Remainders", IEEE
Trans. on Computers, Vol.C-17, No. 10, pp. 925-
931, October 1968.

[AVI 61) Avizienis, A. "Signed Digit Number Representation
for Fast Parallel Arithmetic", IRE Trans. Elec-
tron. Comput., Vol. EC-10, pp. 389-400, 1961.

[AVI 62) Avizienis, A., "On a Flexible Implementation of
Digital Computer Arithmetic ", Proceeding of IFIP
Congress, Munich, W. Germany, Aug 27 to Sept 1,
1962, pp. 204-211.

CAVI 65) Avizienis, A., "A Study of the Effectiveness of
Fault-Detecting Codes for Binary Arithmetic," Jet
Propulsion Lab., Pasadena, Calif., Tech. Rep. 32-
711, Sept. 1, 1965.

CAVI 66) Avizienis, A., " Arithmetic Microsystems for The
Synthesis of Function Generators", Proceeding of
the IEEE, Vol. 54, No.12, Dec 1966, pp. 1910-
1919.

EAVI 67) Avizienis, A., "Concurrent Diagnosis of Arithmetic
Processors," in Dig. 1st Annu. IEEE. Comput.
Conf., pp. 34-37, Sept. 1967.

[AVI 68) Avizienis, A., "Theory of Digital Computer Arith-
metic", Notes for Engineering 225A, pp. 1-5, UCLA
Computer Science Dept., 1968-1969.

[AVI 70) Avizienis, A. and Tung, C., "A Universal Arithmet-
ic Building Element (ABE) and Design Methods for
Arithmetic Processors", IEEE Transactions on Com-
puters, Vol C-19, No. 8, August 1970, pp. 733-745.

EAVI 71) Avizienis, A., "Arithmetic Error Codes: Cost and
Effectiveness Studies for Application in Digital
System Design", IEEE Trans. on Comput., Vol. C-20,
No. 11, Nov. 1971, pp. 1322-1331.

143

* .o-- .



EAVI 73) Avizienis, A., "Arithmetic Algorithms for Error-
Coded Operands", IEEE Trans. on Comput., Vol. C-
22, No. 6, June 1973, pp. 567-572.

[AVI 79) Avizienis, A. et al., "Proposal for Research in
Distributed Processing Systems", Submitted to the
Office of Naval Research, Report No. UCLA-ENG-P-
4504-N-79, June 1979.

EBOR 68) Borovec, R.T., "The Logical Design of a Class of
Limited Carry-Borrow Propagation Adders", M.S.
Thesis, Report 275, Department of Computer Sci-
ence, University of Illinois, Urbana, August 1968.

EBRO 60) Brown, D.T., "Error Detecting and Correcting
Binary Codes for Arithmetic Operations", IRE
Trans. Electron. Comput., Vol.EC-9, pp. 333-337,
Sept. 1960.

[CHI 72) Chien, R.T. and Hong S.J., "Error Correction in
High-Speed Arithmetic", IEEE Transactions on Com-
puters, Vol. c-21, No. 5, May 1972, pp. 433-438.

[CHU 80) Chu, M. and Ercegovac, M.D., "A Multi-
Microprocessor Bit-Slice Organization for Function
Evaluation", International Symposium and Micro-
Computers at Asilomar, Pacific Grove, California,
January 1980.

EDIA 55) Diamond, J.M., "Checking Codes for Digital Comput-
er", Proc. IRE (Corresp.), Vol.43, pp. 487-488,
April 1955.

CERC 75) Ercegovac, M.D., "A General Method for Evaluation
of Functions and Computations in a Digital Comput-
er", Ph.D. Thesis, Report No. 750, Department of
Computer Science, University of Illinois, Urbana,
Augest 1975.

[ERC 78] Ercegovac, M.D., "An On-Line Square Rooting Algo-
rithm", Proc. 4th IEEE Symp. Comput. Arithmetic,
pp. 183-189, October 1978.

[ERC 80) Ercegovac, M.D. and Grnarov, A.L., "On The Perfor-
mance of On-Line Arithmetic", Proc. 1980 Interna-
tional Conference on Parallel Processing, Harbor
Springs, Michigan, August 1980.

EGOR 80) Gorji-Sinaki, A. and Ercegovac, M.D., "On-Line
Division Algorithms: A Systematic Derivation", (in
preparation), 1980.

144



EGOY 76) Goyal, Lakshmi, "A Study in the Design of an Ar-
ithmetic Element for Serial Processing in an
Iterative Structure ", Ph.D. Thesis, Report 797,
Department of Computer Science, University of Il-
linois, Urbana, May 1976.

[GRN 79] Grnarov, A.L. and Ercegovac, M.D., "An Algorithm
for On-Line Normalization", UCLA Computer Science
Department Quarterly, Vol.7, No.3, pp. 81-94, July
1979.

[GRN 80) Grnarov, A. and Ercegovac, M.D., "VLSI-Oriented
Iterative Networks for Array Computations", 1980
International Conference on Circuits and Comput-
ers, New York, October 1980.

[HAB 70] Habibi,A. and Wintz, P.A., "Fast Multipliers",
IEEE Transaction on Computers, February 1970, pp.
153-157.

EIRW 77] Irwin, M.J., "An Arithmetic Unit for On-Line Com-
putation", Ph.D. dissertation, University of Illi-
nois at Urbana-Champaign, report No. UIUCDCS-R-
77-873.

[MAR 74] Markus, J., "Guide Book of Electronic Circuits" Mc
Graw-Hill, Inc. 1974, Page 335.

[NEU 75] Neumann, P.G. and RAO, T.R.N., "Error-Correcting
Codes for Byte-Organized Arithmetic Processors",
IEEE Transactions on Computers, Vol. c-24, No. 3,
March 1975, pp. 226-232.

[OKL 78) Oklobdzija, V.G., "An On-Line Higher Radix Square
Rooting Algorithm", M.S. Thesis, Computer Science
Department, University of California, Los Angeles,
June 1978.

[PAR 78] Parhami, B. and Avizienis, A., "Detection of
Storage Errors in Mass Memories Using Low-Cost Ar-
ithmetic Error Codes", IEEE Trans. on Computers,
Vol. C-27, No. 4, April 1978, pp. 302-308.

[PET 72] Peterson, W.W and Weldon, E.J., "Error Correcting
Codes", Second Edition, MIT Press, Cambridge,
Mass., 1972.

[RAG 80] Raghavendra, C.S. and Ercegovac, M.D., "A Highly
Functional Simulator of On-Line Algorithms",
report-manual (in preparation), 1980.

145



[RAO 68] Rao, T.R.N., "Error-Checking Logic for
Arithmetic-Type Operations of a Processor", IEEE
Trans. on Comput., Vol. C-17, No. 9, Sept 1968.,
pp. 845-849.

[RAO 70] Rao, T.R.N., " Biresidue Error Correcting Codes
for Computer Arithmetic", IEEE Trans. on Comput.,
Vol. C-19, No. 5, May 1970, pp. 398-402.

[RAO 72] Rao, T.R.N., "Error Correction in Adders Using
Systematic Subcodes", IEEE Trans. on Comput., Vol.
C-21, No. 3, March 1972, pp. 254-259.

[RAO 74] Rao, T.R.N., "Error Coding for Arithmetic Proces-
sors", Academic Press, New York, NY., 1974.

(RAO 77] Rao, T.R.N. and Reinheimer, H.J., "Fault-Tolerant
Modularized Arithmetic Units", National Computer
Conference, 1977, pp. 703-710.

[ROB 58] Robertson, J.E., "A New Class of Digital Division
Methods", IRE Trans. on Electronic Computers,
pp.88-92, September L958.

[ROH 67] Rohatsch, Fred A., "A Study of Transformations Ap-
plicable to the Development of Limited Carry-
Borrow Propagation Adders", Ph.D. Thesis, Report
226, Department of Computer Science, University of
Illinois, Urbana, June 1967.

[TEX 69] Texas Instrument Incorporated, "TTL Integrated
Circuits Catalog", Dallas, Texas Instruments Cata-
log CC201, August 1969.

[TRI 77] Trivedi, K.S. and Ercegovac, M.D., "On-Line Algo-
rithms for Division and Multiplication" IEEE
Trans. on Comput., Vol. C-26, No.7, July 1977.

[TRI 78] Trivedi, K.S. and Rusnak, J.G., "Higher Radix On-
Line Division", Proc. 4th IEEE Symp. Comput. Ar-
ithmetic, pp. 164-174, October 1978.

[TUN 70] Tung, C. and Avizienis, A., "Combinational Arith-
metic Systems for the Approximation of Functions",
1970 Spring Joint Computer Conf., AFIPS Proc.,
Vol. 36, Washington, D.C., Spartan, 1970, pp. 95-
107.

WAT 80] Watanuki, 0., "A Study of On-Line Arithmetic for
Highly Concurrent Execution of Numerical Algo-
rithms", Ph.D. Dissertation (in preparation),
1980.

146



APPENDIX A

HARDWARE DESIGN OF AN ON-LINE DIVISION UNIT

In this appendix we consider the hardware implementa-

tion of the MAIN DIVIDE Unit. Since M4AIN and RESIDUE Units

have similar organizations, it is obvious that the same

design can be applied to a RESIDUE Unit with minor modifica-

tions.

In order to design such a unit we assume that the on-

line unit consists of a linear cascade of identical Process-

ing Elements (PEs). Each PE is a complex logical module and

contains logic to perform on-line operation under the con-

trol of the Global Control Unit (GCU).

Figure (A.1) shows the schematic organization of on-

line division unit along with the GCIJ.

EU performs the exponent calculations.

END UNIT allows the last PE to be identical to all the other

PEs as far as interface is concerned.

The PEs collectively contain the fractional parts of

all active operands, one digit in each PE. Most significant

digits are in PE 1 and least significant digits in PE n' Out-

put digits are generated by the most significant Processing
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Element in an on-line mode and are placed on the Z-Bus.

Each output digit is stored by all PE's temporarily and at

the same time reaches the next on-line unit.

After receiving the output digit and the transfer in-

formations from the right-hand neighbor, each PE starts the

computation and generates one digit of the partial

remainder. Depending on this partial remainder and the trun-

cated version of the divisor, next quotient digit is select-

ed by PE1 and is placed on the output bus. This operation

continues until the required precision is obtained.

In order of determine the operation of each PE. we look

at the basic recursion formula for on-line division (Equa-

tion 3.12):

Pj=rPj-1-qjDj+nj+gr - Qj-idj+gr (A.1)

Assuming that each of the operands are m digits long we

have:

m 4
P i=l i (A.2)

j+8
D.= Z d.r -i ] i= 1  i(A.3)

p?= The i-th digit of the j-th partial remainder (this digit
1

is in PE.).

ni , d.= The i-th digit of the operands (resident in PE i ).
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The digits processed by PEi in step j of the algorithm

will be obtained by the following picture:

j-l, j-1 j- j-1 j-1
rpj-I=p1 P 2 ... P +s.*.......... Pi+l .................. P 0

D j 0*dI ...... da ............. di.. .d j+. .0 ............. 0

nQ+ 0n0 ..... 0nj+60 .................................... 0

QJ-lr-6 =0*0 ..... qq 2 .... qi+ ..... qj-1
0 .......... 0

• is the decimal point

Therefore, the digits processed by PEi are obtained and

(A.1) becomes:

pPi -pijl )-qjdi+nj+ a[ i = ]3-q i+ l -gd '+ g+T !j )-rT~ j)  (A.4)
1 i+1 1 i-1

where nj+ [i=f] means nj+6 will be added in PEi only if i=6.TO ) = transfer digit from PEi+ 1 at the j-th step

1--1TiI = transfer digit to PEi_ at the j-th step

It is obvious that qi+l- is zero in the Processing

Element not in the following range:

lqi+l-S j-2+8a> i >
qi+l -S=|10 otherwiseL (A.5)

Using Eq. (A.4) the following picture for the on-line divide

unit will be obtained (Figure A.2).
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In order to eliminate carry propagation between the

PEs, we assume that each digit of the partial remainder

(pij )) in PE. is represented by an interim partial remainder

(w J)) and a transfer digit (Ti 9) such that:

(~J)=wi(J)+T ( j )  (A.6)

The transfer function in Eq. (A.4) is obtained by a

series of three transformations fl P f2 and f3 such that:

S_ .Pl (j  l)

f' -qi+l-8 dj+8rti- ) wl 1i

f2 -qj*d =rt P20 ) W2(j) i
1 2 i- 1 i (A.7)

The transfer digits from PEi  to PEi_ are
Pl(J) P2 (j)

ti_ 1  and ti_ 1  resulting from transformations f and f2

respectively. Also there is a transfer digit out of the

Multi-input Adder (tA( j )). Therefore:

T(J)=tP10 j ) +tP2 (i-i i- t + t A ( j ) (A8- i-I(A.8)
11i-l i- i i-i

substituting (A.6), (A.7) and (A.8) in (A.4) we get:

pW[j)-w( j-1 )+T ( j-l )+w2( j)+w (j)
1 i+l i+l i i

+n .PJ-rt A(j)
fj + r i- lf3 ,T(J)-tl (J)+ P2 ( j ) + A(j)

T. i +t. t

p[j)w[j)T j wj)+PODj  P2 ( j ) A(j
p 'j i i~ +ti +ti j  (A.9)
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A block diagram of transformations fl f2 and f3  is

shown in Figure (A.3).
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Transformation f3  essentially requires a radix-r

multi-input adder which forms the sum of the digits of both

signs. This adder is implemented as a k-stage (r=2k) linear

cascade of a radix-2 multi-input adder where each input of a

radix-2 adder can assume three values [1,0,I}. The organi-

zation of this adder is shown in Figure (A.4).

The products qj*d i and qi+lr*dj+a are generated by two

separate product matrix generators which consist of a k*k

square array of redundant binary product cells. Each cell
*

performs the product of two redundant binary digits qj and
*1

d i and its output product digit is also in the digit set

(1,0,1). Figure (A.5) shows the operation of the digit pro-

duct generators f1 and f2 (k=4).

Therefore, transformation f3 requires k MIRBAs (Multi-

Input Redundant Binary Adder), each capable of summing

2(k+l) redundant binary inputs, as well as the 'Transfer'

from the adjacent MIRBA position [GOY 76). Figure (A.6)

schematically shows the implementation of f3 for radix 16,

that is, k=4.
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A.1 Design of a MIRBA

MIRBA is a limited carry/borrow propagation witlo w*

accepts several redundant binary inputs (digit s" o .

and produces one redundant binary output (with 4prr

adder Transfers for more significant adjacent slior "so,.

Using Rohatsch's technique CROH 67). a l0 inr,;'. 14,

can be realized with four simple transforma,,ie W I

(A.7) shows one such four level (each level xnd, -a-.-

box) adder which is applicable for k<6.

Another way of implementing MIRBA's is the Loq-sur -r,.

technique. In this scheme each MIRBA can be implement*, b

a log-sum tree structure of two input redundant binarv

adders (Borovec Unit [BOR 68)). For a 2(k+l) input MIRBA,

the tree structure has L levels of Borovec Units (BU) such

that:

L= [10 2 2(k+ll (A. 10)

and the number of BU's required is (2k+l). Figure (A.8)

shows the log-sum tree structure for a 10 input MIRBA.
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A.2 Logic Design of The Processing Element

The major components of the PE are the Register File

for the storage of active operands, The Digit Processing

Logic (DPL) which is essentially a large combinational logic

circuit and Local Control Unit (LCU) which supplies the con-

trol signals in proper order to condition the combinational

DPL. Figure (A.9) shows the schematic block diagram of a

Processing Element. The register file comprises a set of

digit-wide registers which are used to hold the operand di-

gits and the result digits.

The DPL operates on the operand digits stored in the

register file of the PE and the informations received from

its right neighboring PEs. It also generates Transfer infor-

mation for its left neighbor PE. The LCU issues the timing

control signals to the processing logic for sequencing the

various steps of the digit algorithm.

The register file is a set of registers that are used

to hold the operands and result digits. Each PE retains one

digit of each of the active operands. Each register is (k+l)

bits long to hold the k-magnitude bits and one sign bit of

one sign and magnitude encoded radix-2k digit.

There must be at least seven registers in a PE. One for

the dividend, one for divisor, one for quotient digit and

one for interim partial remainder (w Three other regis-

162



OPERANDS AND THE RESULT BUS

FROM/TO MEMORY

L~4~ REGISTER FILE
I
I
II

T~l

i-T (j-1)

DIGIT i+1

m(j)  PROCESSING
wfi LOGIC Id}

I (DPL)

qi< I 6 !-- 1

LOCAL CONTROL 1-- FROM/TO PEi+1
TO/FROM PEi 1  UNIT (LCU)

II
II

FROM GCU

Figre A.9 - Block Olaam of a Prommini Element.
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ters are used to hold the transfer functions (T.j ) coming

from PEi+I. In the next step of the computation (j+l) these

functions are gated to PEi along with w They consti-

tute the operands of PEi 1 in step (j+l).

There are other registers in a PE which are used to

hold the intermediate results. These registers are located

in DPL and will be shown later.

The registers in the register file are loaded from a

buffer register, IBR whose contents are determined by the

internal Register Input Bus Selector, SRIB in the Digit Pro-

cessing Logic. Similarly, the contents of the registers are

inputed to the DPL either directly or through an Output Bus

Selector SROB, also in DPL.

A.3 Block Diagram Description of DPL

Figure A.10 shows the data flow structure of the Digit

Processing Logic (DPL) in a block diagram form. It consists

of three major components- the Digit Product Generator, DPG,

a radix-2 k multi-input adder MIAD, and a Digit Sum Encoder,

DSE. DSE converts the redundant binary sum output of adder

MIAD to the Sign and Magnitude format for local storage in

the Register File, or transfer out of the PE.

As shown in Figure (A.10) are input and output ports

designated as TIP i , RIP i and TOPi, ROPi, respectively. The
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input port TIP i carry the 'Transfer' (carry or borrow) from

adjacent MIAD and the contents of some register in the Re-

gister File of the adjacent PEi+ I . RIP i carry the quotient

digit from PEi+Ig. The output ports TOP. and ROPi carry
similar information for PEi and PEi+I_ respectively.

A.4 Logic Design of a Radix 2k Multi-Input Adder (MIAD)

In general, a radix-2k multi-input adder consists of a

linear cascade of k MIRBAs. A 2(k+1) input MIRBA is imple-

mented as a tree structure of BUs (see Fig. (A.8)). Each

MIRBA requires 2k+l BUs and are aranged in L=f1og 2 2(k+l) I

levels. Therefore:

GMIAD=k( 2 k+l)GBU (A.11)

tMIAD=L*gBU (A.12)

GMIAD =Number of Gates Required for One MIAD

tMIAD = Delay of One MIAD

G = Number of Gates Required for One BU

BU =Delay of One BU

For a 2(k+l) input adder, the number of pins required
for the input and output adder transfers A(j1) and t-1

are 2(2k+1) each (see Figure A.8).
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A.5 Logic Design of DPG

The Digit Product Generator forms the product array of

two signed radix-2k digits. It accepts the two digits encod-

ed in Sign and Magnitude format and outputs the product ar-

ray in redundant binary. The logical design of DPG is shown

in Figure (A.11).

The number of gates required for each DPG is CGOY 76):

k 2 AND GATES

1 XOR

k2 XOR or 2k2 AND for LVE I

SM/RB k2 AND for LVE2
NONE for LVE3  (A.13)

The pins contributed by DPGs to the pin complexity of

DPL are those pins which are required for ti_1
i-i

P2(J) P(j-1) P2 (j-1)
- , ti+ and t

signi~ik(k-1) (.4
No. of pins for a transfer signal=l+ 2 (A14)2

A.6 Logic Design of Digit Sum Encoder

The Digit Sum Encoder (DSE) transforms the redundant

binary sum output of the radix-2k adder into an algebraical-

ly equivalent radix-2k sum digit in Sign and Magnitude for-

mat for either local storage in the Processing Element or
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transmission out of the PE. Total number of gates, GDSE re-

quired by DSE logic has been found to be EGOY 76]:

16k for LVE 2 and LVE 3

GDSE :126k for LVE 1

A.7 Logic Design of Selectors SRIBSROBSTOP and STIP

The selector SRIB is a seven input multiplexor. It con-

stantly examines the data on D, 0 and N Busses. If the data

on any of these busses belong to PEi, it writes this data in

the corresponding registers in the register file. It also

gates the output of DSE (wij )) to Register RW in the Regis-

ter File. The transfer function T j) (-tA() tP  P2 J
1 i 1 3

which should be sent to PEi_ 1  in (j+l)-th step is gated

through this selector to Register File for temporary

storage. The width of the selector is obtained by the fol-

lowing equation:

b=MAX k+l,PtA( j ) , P Pl ( j ) p P2 ( jj

i t i  t i

Pt . j) in Count of t A (i J)-2(2k+l)

Pl j1~-

tiP -lj) Pin Count of t i =ji+ 2~-1
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tP2 j (k)k-l2S2(j) t 1 Pin Count of i2 j k=I+ l2

t.
1

Therefore:

b=2(2k+l) (A.16)

The logic design of SRIB is similar to that shown in

[GOY 76) and the number of gates required is:

GSRIBZb+b+2(l+ k(k-) )+4(k+l)=k 2+llk+10 (A.17)

The selector SROB selects the contents of one of the

registers of the Register File on to the Register File Out-

put Bus (ROB). The gates required for this network are

dependent on the number of registers in the Register File

and the bit width of the registers. There are seven regis-

kters in the Register File. For radix-2 k , four of them are

(k+l) bits wide, one is 2(2k+1) bits wide and the other two

are (1+ k(k-)) bits wide. Therefore, the gate requirements2

of SROB are exactly same as that of SRIB, that is:

G SROB=k 2+Ilk+IO (A.18)

The width of selector STOP is equal to the width of

output port TOP. * The width of TOP i is determined by the

maximum length of "Adder Transfers". Therefore, the width of

TOP i is given by Eq. (A.16). Logic implementation of STOP

is shown in Figure (A.12). From the given design we con-

clude that:
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GSTOP 3b+2(+ k(k-12) )=k 2+llk+8 (A.19)

The selector STIP is actually a four output demulti-

plexor. The width of STIP is exactly the same as that of

STOP and is therefore equal to b. The logic implementation

of STIP is simple and the number of gates required for this

element is:

GsTip=b+k+1+2(14+ k(k-1 ) )=k 2+4k+5  (A.20)

Figure (A.13) shows the logic implementation of this selec-

tor.
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A.8 Storage Buffer Registers of DPL

DPL has ten buffer registers, R 1through R9and IBR.

The width of each of these registers has been indicated in

Table (A.1).

4-------------------------

IBuffer ReglWidth bitsl
4-------------------------

I R 1  12(2k4-1) I
-------------------------

I R 2 Ik4-1 I
--- 2-----------------
I R3  I 14k(k-1) /21
+------------------------4-

I R 4  1 +k (k-1) /21
4------------------------4-

I R 5  IkI- I
4------------------------4-

I R6  Ik-I- I
4------------------------4-

I R 7 Ik4-1 I
4------ --------------4-
I R 8 Ik4-1 I
4------------------------4-
I R 9  Ik4-1 I
4------------------------4-

I IBR I2(2k4-1) I
4------------------------

Table (A.1)- Width of The Registers in DPL
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A.9 Design of SM/RB, CHSI and CHS2 Blocks

SM/RB block encodes the input which is represented in

Sign and Magnitude format to redundant binary representa-

tion. There are nine distinct ways that we can encode a sign

and magnitude number. The simplest one is the encoding that

assigns the sign of the number to all the bits. Adopting

this simple encoding, there is no gate requirement for SM/RB

block. Therefore:

G -/ 0 (A.21)

SM! RB-

CHS1 and CHS2 are sign changers and since their inputs

are in Sign and Magnitude format, they can be implemented by

a single inverter gate. Therefore:

G =G cHS =1 (A.22)
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A.10 Design of The Quotient Selection Unit

The selection of the quotient digits is done by the

most significant Processing Element (PEI ). The quotient di-

git selector inside PE1 is a table look-up device which im-

plements the SELECT function (see Algorithm MAIN DIVIDE). It

examines Y most significant digits of rPj_ 1 and a most sig-

nificant digits of D I. in order to select the appropriate

quotient digit, qj.

wil (j-) W 1 -I)

1 2

TI)
d2 

"

* QUOTIENT
•. SELECTION

a 
Ty

q.
i

Figure (A.14)- Quotient Selection Unit
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According to Eq. (A.9)

m jP. k- _p *r-= Ew_ wJl+T ( - ) r-i
i=l 1 i  r (A.23)

Therefore, truncated version of PjI (i.e., Pj-I ) is:
( j l ) + T ( j-l) r--i

-=lj-1 ~- w I Ti (A.24)

This means Ti s and w.'s can be used as the address

lines of an ROM device implementing the SELECT function. It

is not difficult to see that even for small radices the

number of input lines to the device will be prohibitive [IRW

77). Two techniques to avcid this dilemma are available: 1)

Use a PLA, or 2) Perform Carry Propagation on the most sig-

nificant portion of Pj-I to reduce the number of lines re-

quired. Irwin shows that the number of input line will be

reduced by up to 44% if this technique is used [IRW 77). In

estimating the cost of the Processing Elements we have ig-

nored the cost of the Selection Block. Because, it effec-

tively appears in only one PE (PE1 ). The time required by

the selection process has been estimated to be of the order

of 4-5 gate delays [ERC 75, IRW 77]. In the delay analysis

of the division unit we assume

tselectt s -4g
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A.11 Gate Complexity of Digit Processing Logic

The total number of gates we require for the implemen-

tation of DPL is the sum of all the gates we require for

each of its components. From Equation (A.11) we have:

GMIAD=k(2k1I)GBU

Each Borovec Unit (BU) requires 26 gates EGOY 76].

Therefore, the total number of gates required for the

Multi-input Adder is:

G MIAD=26k(2k11)

other components of DPL require the following number of

gates:

GDPG(1)=k 2 AND +2 XOR =k 2+8 GATES

GDPG(2 )=k2+8 GATES

GDSEm 16k

G SR~k2+llk+10GSRIBk2Ik0

GSROBSk2+llki10

G 2k2+l1k+-STOP

GSTIP k2+42k5

GSM/RB 0
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GCHSi GCHS2 =1

Adding these together we get:

G DPL=58k 2+79k+ 51 (A.25)

Table (A.2) shows the gate complexity of DPL.

A.12 Pin Complexity of DPL

The pins required for digit processing logic DPL is the

sum of the pins necessary for input ports TIPi, RIP and
1

output ports TOPi and ROP. The total number of pins, PDPL

necessary for logic implementation of DPL is equal to the

sum of the pins required for input and output ports.

PDPL =PTOPi+P ROPi +PTIPi +PRIPi

from (A.22) we have:

PTIP imPTOP ip tA( j- )'2 (2k l (A.26

i+l

and since the information on RIP i is a single digit then:

PROPi RIPi (A.27)

plugging (A.26) and (A.27) in the equation for PDPL we get:

PDPL=1 0k*6 (A.28)

179



',,J Ul 0 1 b lt d

I. 0>

ii _ 0

-- 0 t i

o. c S 8 0
-~ U

i t S i "

F-180



A.13 Overall Logic Complexity of a PE

The total number of gates, GPE' required for the imple-

mentation of a PE is the sum of the gates required for the

combinational logic of DPL, the gates required for the PE

control logic and the gates required for the implementation

storage registers in the PE. The storage registers in a PE

comprise the registers in the Register File and buffer re-

gisters in DPL. Using Table (A.1) the number of gates needed

for storage is:

GSTO=E6(kil)+4(2k l)+k(k-l)+ 2 ]GD

=(k2 +l 3k)12)GD

GD is the number of gates required for the realization of a

D type flip-flop. Assuming GD=6 [TEX 69) we get:

GSTo=6k 2+78k*72 (A.29)

Ignoring the number of gates needed for PE control, the

number of gates required for each PE is:

GPE=GDPL+GSTO

Substituting the values from Equations (A.25) and (A.29) we

get:

G E=64k 2+157ki 123 (A.30)

The pin requirements for each PE is the sum of pins re-

quired for DPL plus the number of pins needed for input and

output busses (ignoring the pins required for control signal
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from GICU). That is,

P -Mp +1P +P +P
PEDPL N-BUS D -BUS Q-BUS

or

P =13ki-9 (A.31)PE

The pin and gate requirements of DPL and PE along with

the gate requirement of other PE components have been shown

in Table (A.3).
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APPENDIX B

TIME (DELAY) CONSIDERATIONS OF AN ON-LINE DIVISION UNIT

Time required to compute a single quotient digit (k+l

bits) is composed of the following elements (see Algorithm

MAIN DIVIDE).

1. Time to select a quotient digit (t )

2. Time to update 0j and Dj registers (tu )

3. Time to perform the basic recursion formula (tR)

The following diagram indicates the relative position

of these three delays with respect to one another.

Nj+66 dj+ 6 ARRIVE

SSELECTION UPDATE. . .I

n i+6+ 1 ANd ARRIVE

UPDATE RECURSION SELECTIONURAEI II I- -

Di P q$1

Since usually ts and tR are greater than tu the total

time for one step of the algorithm (TSTEP) is:
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TSTEp=t+tR (B.l)

Each step starts when the digits of the dividend (nj)

and divisor (d j+) appear on the input busses (N-BUS and D-

BUS). At the beginning of each step selection of the quo-

tient digit (qj) is initiated by the quotient selection unit

in the most significant Processing Element (PEI). This

selection is based on the truncated version of the previous

partial remainder (P ) and divisor (0l.

PE 1 outputs qj on the Q-BUS. After reception of this

quotient digit and some other informations from its right

neighbor, each PE starts processing of one digit of the next

partial remainder (P.). After certain amount of time (tPE),

next partial remainder will be available in a redundant for-
mat (w!9 ) and T!j)). This process continues until required

1 1

precision is obtained. We compute tPE by measuring the time

span between the setting on all registers (R through R9 ) in

PE i at step (j) and (j+l). Therefore (B.1) can be rewritten

as:

TSTEp=ts+tpE (B.2)

Graph representation of ts+tPE is shown in Figure (B.1)

[refer to block diagram of the MAIN Unit in Appendix-A].

Using this graph TSTEP is found to be:

TSTEP 2tSRIB +tDSE +tMIAD+ tSM/RB+ tSTIP+tSTOP
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+3tSROB +ts (B.3)

The components of TSTEP are as follows:

t s

The time required by the selection block has been es-

timated to be in the order of 4-5 gate delays CIRW 77]. As-

sume:

t =48 (B.4)s g

tSRIB:

Logic design of Register File Input Bus Selector (SRIB)

is given in Appendix-A. According to this design:

tSRIB=29g (B.5)

tSROB:

Referring to Appendix-A

tSROB=26g (B.6)

Also we have:

t =26 (B.7)
STOP g

and

tCHS12=g (B.8)

tDPG
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Assuming LVE3 (Logic Vector Encoding) for the operands

CGOY 76), and according to what has been explained in the

design of the Digit Product Generator we get:

tDPG=t =2 (B.9)
DGXOR' g

tMIAD:

According to Eq. (A.12) in Appendix A :

tMIAD=L*6BU (B.10)

such that: L= [1og2 2(k+l)I and 
6BU is the time required by

one Borovec Unit [BOR 68). Using LVE 3, aBU is obtained to be

[GOY 76) :

SBU=78g (B.11)

Therefore:

tMIAD7 Ig [og 2 2 (k+1)] (B. 12)

tDSE

From the design given in CGOY 76] tDSE can be estimated

approximately to be:

t DSEZ5k8 +3k8g=8k8g (B.13)

tSTIP:

According to the design given in Appendix A
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tSTIPmrg (B.14)

Adding the components in Eq. (B.3) we get:

TSTEP= [8k+7 r1og 2 (k+l) ) +241ag (B.15)

Table (B.1) shows TSTEP and its components. From this

table it can be deduced that contribution of "Digit Sum En-

coder" (DSE) to the total step time dominates all other com-

ponents for relatively large radices. But this unit can be

eliminated if w!j ) can be stored in redundant format. That

is, RW and R2 should be made to be double bank registers.

Also STIP, SRIB, SROB and STOP blocks should be modified.
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----.--- 4 4 .4 -4 -.-..... +

I i I tSRIBI tDSE ItMIAD ItSTIP ItSTOP ItSROB ItSTEP I
Ir kI I I I I I II
I I I (8) 1 (6 ) 1( ) L (6 ) (§ ) 1(8 ) 1 (6 ) I

12 1 12 1 8 1 14 1 1 12 12 1 391
+---+-----------------------------------------------------
14 12 12 116 121 11 12 12 1 541
------ +-....---------------------------------------------

18 13 12 124 121 11 12 12 1 621
---------------------------------------------------------
1161 4 12 132 128 11 12 12 1 771
------ --------------------------------------------------
1321 5 12 140 128 11 12 12 1 851

--------'-----------------------------------------------

1641 6 12 148 128 11 12 12 1 931
+---+---------4--------------------------------------------
11281 7 12 156 128 11 12 12 1 1011
------- ---------------------------------------.-------.
12561 8 1 2 1 64 1 35 1 1 1 2 1 2 I 116 1
--------- -------------------------------.--------------

Table (B.1)- Time Required for One Step of the Division
Process (T STEP) and its Components
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APPENDIX C

ON-LINE MULTIPLICATION

The problem of on-line multiplication has been ad-

dressed by Trivedi and Ercegovac [TRI 77] and by Irwin CIRW

77). These two references deal with on-line multiplication

when the operands are represented in a non-redundant number

representation system.

The purpose of this appendix is to present a systematic

method for derivation of on-line multiplication which is

compatible with the method given for division EGOR 80). The

problem of redundant operand multiplication is addressed and

it will be proved that the given upper bounds for the

operands in the aforementioned references are pessimistic

and the correct value will be derived.

Redundant Operands

Let the radix r representation of multiplicand, multi-

plier and the product be denoted by X, Y and R respectively

such that:

m -i
X= x.r (C.1)

i=l 1(
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mY= K yi r - i

Y £ ~r'(C. 2)i-i c2

m -i
R= >i pr (C.3)

and R-X*Y to m digits of precision.

We assume xi and yi belong to the following redundant

digit set:

XVy 4 [-D',...,i,0,,....') (r-l)> ' >r/2 (C.4)

Pi may belong to a different redundant digit set:

pi 4 {-p,...,lO~l...,e) (r-l)> p r/2 (C.5)

Redundancy coefficients of X, Y and R are defined as:

r-lI .e-I,- (r-l)> P 
>r/2

k'(r-l)> p r/2

Assume that X and Y are bounded by a positive constant

M such that:

-M< X,Y <M (C.6)

M specifies the maximum and the minimum values that the

operands can assume and is a function of r and This value

will be derived later in this appendix.
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The algorithm which produces the product of two redun-

dant operands X and Y is called the Algorithm "MULT" and is

shown below ETRI 77):
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Algorithm KILT

Step 1 [Initialization):

For j=1,2.....,m Do:

Step 2 [Input Digit):

X.=X +xr-

Step 3 '[Basic Recursion):

P.= rP j1-rpXjjYlx (C.7)

Step 4 [Selection):

p i SELECT(P.)

Step 5 [End Do)

194



Proof of Convergence

Inserting different values of j into the basic recur-

sion formula (Eq. C.7) we get:

1~ P 1-_X y1

j=2 P~ P=rX y+X y+Y x rp

=r 2X 2 y2 -rp

j=3 P~ 3=r X 3 Y3 -(rp1 +P2 )

Continuing this procedure P.i is obtained as follows:

:rXi y )r~~ C8

when j-m

P -r1X Y.-rR _ (C.9)

From (C.3) we have:

R=R_ 1 +pm

Inserting this in (C.9) we get:

P utrmXY- rm(R-prm)

or

R-XY-r- m(P Mpm) (C. 10)

By devising a product digit selection procedure,

SELECT, in Step 4 of the Algorithm "MULT", such that:

195



IPm-Pml< k (C.11)

R=X*Y can be computed to m digits of precision. Note that

the algorithm as it stands produces just the most signifi-

cant half of the product. The least significant half of the

product is available as the redundant output of the adder

after iteration m+l, i.e.,

P m+lPm-Pm (C.12)

By feeding these redundant adder digits directly into

the recoding unit, the least significant half of the product

can also be output in conventional form.

Range Restriction Analysis

Assume that the required SELECTION process in Step 4 of

the Algorithm "MULT" is found and the graph of Figure (C.1)

is obtained. This is a plot of partial product at step j

versus partial product at step (j-1). This plot is desig-

nated as a P-P plot EIRW 77). By analyzing such a plot, a

product digit selection procedure can be specified for the

given r and 3. The notations used in this graph are similar

to those used for division IGOR 80).

Ui - Upper bound for the region in which pj_ i

L. - Lower bound for the region in which pj_l1 i

(Pj The j-th partial product with pj_l1 i chosen as the

product digit.
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In step (j-1) assume pj_l=i is chosen. Prom the basic

recursion formula (C.7) we are able to find the maximum

value that Pj can assume.

(P -=rU .- ri+2M' (C. 13)
jmax 1 2M

(P. J-=rLi-ri-2M '  (C.14))min
When Pj_l p from (C.13) we get:

(P ) max rU -r4+2MP'

In order for P. to be bounded, this value should be

equal to U , therefore:

rUp- rp+2 Me'=U

or

U -rk-2Mk' (C.15)

Similarly for the lower bound:

(p))PJL

) min -p
This results in:

L- =-rk+2Mk' (C.16)

from (C.15) and (C.16) we get:

rk-2Mk'_ Pj _-rk+2Mk' (C.17)
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Selection Region

Selection regions can be obtained by the help of Equa-

tions (C.13), (C.14), (C.15) and (C.16) as follows:

p.-l-1
(P max U for all i' s

Inserting the values from (C.13) and (C.15) we get:

U. <i+k-2Mk' (C.18)

Also for the lower bound the following inequality is always

satisfied:

(P for all i's
i min - P

Using (C.14) and (C.16) we get:

Li. i-k+2Mk' (C. 19)

In order to have maximum overlap between the adjacent

regions i and (i+l), U. should be as large as possible and

L.i as small as possible. Therefore, from (C.18) and (C.19)

we have:

fL.:ik2Mk'

i --,M (C-20)

and therefore:

i~k-2k' > P. >=i +M C.1
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In order to have overlap between the adjacent regions

the following inequality should be satisfied:

U.>L1i L+ 1

from (C.20) we get:

M 2k- (c.22)

This means, the maximum allowable values of the multi-

plicand and multiplier is equal to 2k- l. If the operands are

larger than this bound, then there will be a "gap" between

adjacent regions. That is, there will be some values of P.J

in which there is no acceptable product digit pj.

For example when r=2 and k-k'=l

1

So shifting the operands two bits to the right will

guarantee the convergence of the algorithm.

Letting j-m in Eq. (C.21) we get:

Pm+k-2Mk'> Pm 2Pm-k+ 2Mk'

or

k-2Mk'> Pm-pm _-k+ 2Mk'

and since M>O and k')O then Eq. (C.11) is satisfied and R is

indeed the product of X and Y to m digits of precision.
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REMARKS

From Eq. (C.22) it is clear that the on-line multipli-

cation is not possible when k-1/2 or when the product is not

redundant.
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APPENDIX D

ON-LINE ADDITION/SUBTRACTION

In this appendix a systematic derivation of on-line

addition/subtraction algorithms will be presented. This

method is compatible with the methods given for on-line mul-

tiplication and division in Appendix C and [GOR 80J respec-

tively. The derivation is applicable to both redundant and

non-redundant operands. But, in what follows we only consid-

er addition and subtraction with redundant operands.

Addition

Let the radix r representation of addend, augend and

sum be denoted by A, B and R respectively such that:

A=il air (D.1)
i=l1

m
= 1 i r (D.2)

m -i
R= x sir (D.3)

i=0

and R-A+B to m digits of precision.

We assume ai, bi , and si belong to three different

redundant digit sets:
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a i 4 8-r,° O,,I., p (r j)' r/2 (D.4)
t IS$

b i 4 {- .,,,,.p1(r-L) e%%r/2 (D.5)

s (-p,..,Y,o,l,..,p) (r-l)> e .r/2 (D.6)

Redundancy coefficients of A,B and R are defined as:

Ik r-

rI.

-1 (D.7)

The algorithm of the next page generates the sum of A

and B in on-line mode. We call this algorithm "ADD". This

algorithm is a modification of the addition algorithm shown

in [IRW 77].
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Algorithm ADD

Step 1 [Initialization):

p =0

S-1=

R_1=0

For j=1,2 ..... ,m+1 Do:

Step 2 [Input Digit]:

a. and bj

step 3 [Basic Recursion]:

P jr(Pjl-sj_2 )+(a j +b j )r - 1  (D.8)

Step 4 [Selection]:

sj_=SELECT(r j

R =R +sj_Ir - (j-1)
j j-2 -

Step 5 [End Do]
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Proof of Convergence

Inserting different values of j into the basic recur-

sion formula (Eq. D.8) we get:

j-1 -p 1 =(a1+b1 )r-1

j-2 - P2 =(a 1 +bI)+(a 2 +b 2 )r - -rs0

j-3 -- r(a1+b1)+(a2+b2)+(a3+b3)r
- 1

-r2 s0 -rs1

Therefore, P. is:

P=r j- 1 [(al1+b 1 )r- 1+(a 2+b 2)r- 2+...+(aj+bj)r - j ]

-r j- [S0 +r- +...+r- (j-2) sJ 2]

or

P wr j- J ai +b i)r--r-E--S i r-1 (D.9)

ii1 i=O

if jim+l, then:

m M-1P ~lr m E. (ai+bi r-i-rm Eosir-i1

i =1 i=O(D.)

Using (D.3) we get:

m-1R- K" s ir- I+s r-m

i=O
or
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rn-1 - -M
Ss. =R-smr

i 01
inserting this into (D.10) we obtain:

P+Mr m (A+B)-r (R-smr-m)

rearranging the terms we get:

R-(A+B)-r-m(P M+l-s M) (D.11)

By devising a sum digit selection procedure, SELECT, in

step 4 of the Algorithm "ADD", such that:

1P +l-sm I < k (D.12)

R=A+B can be computed to m digits of precision.

Selection Rules

Figure (D.1) shows a selection graph for the operation

of addition. This is a plot of shifted partial sum versus

the sum of the operand digits (a. and b.) at step j. We

designate this as P-c plot. The notations used in this graph

are similar to those used in Appendix C.

In order to derive the range restriction on P., our

only assumption will be the basic recursion formula (D.8)

and the fact that P. should bounded.
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F"~v D.1 - A P-C Plot
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p j r(Pj J-j-2~ )+c .rl

L j =a i b (D. 13)

The maximum and the minimum values of P. are obtained

as follows:

(P ))j-2  =U -ri+c r1l (D.14)
j max i )

(P ) aJ-2- -L.-ri+c r- (D.15)
jmin 1

when sj-. 2 P from (D.14) we get:

(P )i2(D+C-r
jmax r cr

since P. should be bounded, this value should be equal to

U
-,therefore:

-1U
U-rD+ c r - -Pp' j r

or

U -ur2ic - (D. 16)
p r-l

Similar to this, for the lower bound we obtain:

(P )m 2-L.+rp+c r r .P

This results in:

L =-r-r- (D.17)

from (D.16) and (D.17), (D.18) will be obtained:



r2T - r---i rPj >-r 2k- I (D. 18)

Thus, the upper and lower bounds of rPj are implied by the

recursion formula and not by the selection procedure (as

shown in [IRW 77)).

Selection regions are obtained using Equations (D.14),

(D.15), (D.16) and (D.17) as follows:

(P.)S1-2=i< __ for all ils
j-max - r

plugging Equations (D.14) and (D.16) in the above inequality

we get:

C.U.<r(i+k )  -__rI (D .19)
I- r-I

Similarly from Equations (D.15) and (D.17) and the re-

lation:

(P) sj-21> L: for all i's

)jmin - r

we get:

L.> r(i-k) (D. 20)
1- r-1

In order to have maximum overlap between the adjacent

regions of the P-c plot, the equality signs of Equations

(D.19) and (D.20) should be satisfied. Therefore:

C.
Ui-r(i+k) -3 (D. 21)
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Li=r(i-k) - C (D.22)

thus, the selection regions are specified by the following

inequality:

C. C.
r(i+k) - -3-> rP >r(i-k) - 3(D.23)r-l- r-l

In order to have overlaps between the adjacent regions

of the P-c plot, Ui should be greater than Li+ 1 for all i's.

1
That is :

iLi+1 k>

Therefore, there is always overlap between the adjacent re-

gions of the P-c plot.

In order to prove that the relation (D.12) is satisfied

by the given selection procedure, we rewrite Eq. (D.23) as:

r(sj.1 +k)- r> rP _r(sj_-k ) -

or

c. C.-
k - rTr_)> Pj-sj_1 _k -

when j=m+l we obtain:

Cl c
C + P -C1_m+

since am+l bm+,=0 --) cm+l=0 and therefore:

k> Pr+ -Sn >-k

or
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- -I-k
m+1-81

so condition (D.12) is satisfied by the given selection pro-

cedure and R is indeed the sum of A and B to m digits of

precision.

Subtraction

Since the subtrahend is represented in redundant for-

mat, subtraction can be performed by just flipping the sign

of the subtrahend digits and following the addition pro-

cedure given above.
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